我有一个数据框,其结构类似于以下内容:
set.seed(123)
df<-data_frame(SectionName = rep(letters[1:2], 50),
TimeSpentSeconds = sample(0:360, 100, replace = TRUE),
Correct = sample(0:1, 100, replace = TRUE))
我想通过取落入一定范围(小于30、30-60、60-90,...,大于180)的所有TimeSpentSeconds值来汇总此数据帧,将时间标记为这些范围,将它们按SectionName分组,然后找到“正确”列的总和,以使结果数据框看起来像这样:
TimeGroup SectionName Correct
<fct> <chr> <int>
1 LessThan30Secs a 2
2 LessThan30Secs b 3
3 30-60 Seconds a 4
4 30-60 Seconds b 3
5 60-90 Seconds a 2
6 60-90 Seconds b 3
7 90-120 Seconds a 4
8 90-120 Seconds b 0
9 120-150 Seconds a 4
10 120-150 Seconds b 0
11 150-180 Seconds a 1
12 150-180 Seconds b 2
13 GreaterThan180Seconds a 11
14 GreaterThan180Seconds b 11
我可以使用以下if-else代码成功完成此操作,在该代码中,我一直将所有时间都突变为带有适当标签,分组并汇总的新列:
x <- c("LessThan30Secs", "30-60 Seconds", "60-90 Seconds","90-120 Seconds",
"120-150 Seconds", "150-180 Seconds", "GreaterThan180Seconds")
df %>%
mutate(TimeGroup = if_else(TimeSpentSeconds >= 0 & TimeSpentSeconds <= 30, "LessThan30Secs",
if_else(TimeSpentSeconds > 30 & TimeSpentSeconds <= 60, "30-60 Seconds",
if_else(TimeSpentSeconds > 60 & TimeSpentSeconds <= 90, "60-90 Seconds",
if_else(TimeSpentSeconds > 90 & TimeSpentSeconds <= 120, "90-120 Seconds",
if_else(TimeSpentSeconds > 120 & TimeSpentSeconds <= 150, "120-150 Seconds",
if_else(TimeSpentSeconds > 150 & TimeSpentSeconds <= 180, "150-180 Seconds",
if_else(TimeSpentSeconds > 180, "GreaterThan180Seconds", "")))))))) %>%
mutate(TimeGroup = factor(TimeGroup, levels = x)) %>%
arrange(TimeGroup) %>%
group_by(TimeGroup, SectionName) %>%
summarise(Correct = sum(Correct))
但是,只有一种更好的方法可以做到这一点。我考虑过编写函数,但是由于我对函数编写的了解不高,所以并没有走太远。
有没有人想出一种更优雅的方式来通过我没想到的dplyr方法来完成相同的输出,编写自定义函数,也许在某个时候使用purrr包,或其他一些r函数? >
答案 0 :(得分:3)
我们可以使用cut
(或findInterval
)而不是多个嵌套的ifelse
语句轻松地做到这一点
lbls <- c('LessThan30secs', '30-60 Seconds', '60-90 Seconds',
'90-120 Seconds', '120-150 Seconds', '150-180 Seconds', 'GreaterThan180Seconds')
df %>%
group_by(TimeGroup = cut(TimeSpentSeconds,
breaks = c(seq(0, 180, by = 30), Inf), labels = lbls),
SectionName) %>%
summarise(Correct = sum(Correct)) %>%
na.omit
答案 1 :(得分:3)
case_when()
将做您想要的。这是嵌套ifelse()
语句的一种很好的替代方案。
library(dplyr)
mutate(df,
TimeGroup = case_when(
TimeSpentSeconds >= 0 & TimeSpentSeconds <= 30 ~ "Less Than 30 Secs",
TimeSpentSeconds > 30 & TimeSpentSeconds <= 60 ~ "30-60 Seconds",
TimeSpentSeconds > 60 & TimeSpentSeconds <= 90 ~ "60-90 Seconds",
TimeSpentSeconds > 90 & TimeSpentSeconds <= 120 ~ "90-120 Seconds",
TimeSpentSeconds > 120 & TimeSpentSeconds <= 150 ~ "120-150 Seconds",
TimeSpentSeconds > 150 & TimeSpentSeconds <= 180 ~ "150-180 Seconds",
TimeSpentSeconds > 180 ~ "Greater Than 180 Seconds",
TRUE ~ "NA")
)
最后一个参数是所有不符合任何条件的记录的全部内容,例如时间不到0秒。
答案 2 :(得分:1)
``` r
library(tidyverse)
set.seed(123)
df<-data_frame(SectionName = rep(letters[1:2], 50),
TimeSpentSeconds = sample(0:360, 100, replace = TRUE),
Correct = sample(0:1, 100, replace = TRUE))
time_spent_range <- function(value, start, end, interval) {
end <- end + (end%%interval) # make sure the end value is divisible by the interval
bins_start <- seq(start, end - interval, by = interval)
bins_end <- seq(start + interval, end, by = interval)
bins_tibble <- tibble(bin_start = bins_start,
bin_end = bins_end) %>%
mutate(in_bin = if_else((value > bin_start|(value == 0 & bin_start == 0))
& value <= bin_end,
1,
0)) %>%
filter(in_bin == 1)
bin <- paste0(as.character(bins_tibble$bin_start[1]),
'-',
as.character(bins_tibble$bin_end[1]),
' Seconds')
return(bin)
}
df %>%
mutate(TimeGroup = map_chr(TimeSpentSeconds, time_spent_range, start = 0, end = max(df$TimeSpentSeconds) , interval = 30))
#> # A tibble: 100 x 4
#> SectionName TimeSpentSeconds Correct TimeGroup
#> <chr> <int> <int> <chr>
#> 1 a 103 1 90-120 Seconds
#> 2 b 284 0 270-300 Seconds
#> 3 a 147 0 120-150 Seconds
#> 4 b 318 1 300-330 Seconds
#> 5 a 339 0 330-360 Seconds
#> 6 b 16 1 0-30 Seconds
#> 7 a 190 1 180-210 Seconds
#> 8 b 322 1 300-330 Seconds
#> 9 a 199 0 180-210 Seconds
#> 10 b 164 0 150-180 Seconds
#> # ... with 90 more rows
```
由reprex package(v0.2.0)于2018-08-26创建。