Seaborn条形图中的错误栏的问题-Python

时间:2018-08-25 04:09:54

标签: python pandas aggregate seaborn stdev

  

(已经看过类似的问题,但是他们没有回答   查询)

我有一个具有以下结构的数据框df1

def _get_unit(self, cr, uid, ids, prop, unknow_none, context=None):
res = {}
for record in self.browse(cr, uid, ids):
    res [record.id] = record.user_id.context_department_id.id
    return res

_columns = {
'user_id': fields.many2one('res.users', 'user', readonly=True),
'unit_id': fields.function(_get_unit, string='dep' , store=True ,type='many2one',relation='hr.department'),

我正在使用以下代码重新创建数据,然后显示条形图

{'token': {0: '180816_031', 1: '180816_031', 2: '180816_031', 3: '180816_031', 4: '180816_031', 5: '180816_031', 6: '180816_031', 7: '180816_031', 8: '180816_031', 9: '180816_031'}, 'variable': {0: 'Unnamed: 0', 1: 'adj_active_polymerase', 2: 'adj_functional_sequencing_pores', 3: 'adj_high_quality_reads', 4: 'adj_single_pores', 5: 'cell_mask_bilayers_sum', 6: 'num_align_high_quality_reads', 7: 'num_total_cells', 8: 'potential_pore', 9: 'short_pass'}, 'value': {0: 21.0, 1: 615850.51515151514, 2: 615850.51515151514, 3: 486008.39393939392, 4: 803784.06060606055, 5: 1665347.5757575757, 6: 468638.03030303027, 7: 2097152.0, 8: 1158527.0, 9: 2067189.2424242424}}

但是我无法在输出Expected Output

中获得所需的误差线

我在数据框中仅使用均值之前已经生成了输出,但是我也需要误差条,因此我考虑在yerr中添加std并使用它(在阅读了很多内容之后)

请帮助。

1 个答案:

答案 0 :(得分:1)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns


d = {'token': {361: '180816_031', 119: '180816_031', 101: '180816_031', 135: '180816_031', 292: '180816_031',
               133: '180816_031', 99: '180816_031', 270: '180816_031', 19: '180816_031', 382: '180816_031',
               414: '180816_031', 267: '180816_031', 218: '180816_031', 398: '180816_031', 287: '180816_031',
               155: '180816_031', 392: '180816_031', 265: '180816_031', 239: '180816_031', 237: '180816_031'},
     'station': {361: 'deneb', 119: 'callisto', 101: 'callisto', 135: 'callisto', 292: 'callisto', 133: 'deneb',
                 99: 'callisto', 270: 'callisto', 19: 'deneb', 382: 'callisto', 414: 'deneb', 267: 'callisto',
                 218: 'deneb', 398: 'callisto', 287: 'deneb', 155: 'deneb', 392: 'deneb', 265: 'callisto',
                 239: 'callisto', 237: 'callisto'},
     'cycle_number': {361: 'cycle09', 119: 'cycle06', 101: 'cycle04', 135: 'cycle01', 292: 'cycle04', 133: 'cycle05',
                      99: 'cycle06', 270: 'cycle07', 19: 'cycle04', 382: 'cycle08', 414: 'cycle04', 267: 'cycle10',
                      218: 'cycle07', 398: 'cycle08', 287: 'cycle09', 155: 'cycle08', 392: 'cycle06', 265: 'cycle02',
                      239: 'cycle09', 237: 'cycle07'},
     'variable': {361: 'adj_high_quality_reads', 119: 'short_pass', 101: 'short_pass', 135: 'cell_mask_bilayers_sum',
                  292: 'adj_active_polymerase', 133: 'cell_mask_bilayers_sum', 99: 'short_pass',
                  270: 'adj_active_polymerase', 19: 'Unnamed: 0', 382: 'adj_high_quality_reads',
                  414: 'num_align_high_quality_reads', 267: 'adj_active_polymerase', 218: 'adj_single_pores',
                  398: 'num_align_high_quality_reads', 287: 'adj_active_polymerase', 155: 'cell_mask_bilayers_sum',
                  392: 'num_align_high_quality_reads', 265: 'adj_active_polymerase', 239: 'adj_single_pores',
                  237: 'adj_single_pores'},
     'value': {361: 99704.0, 119: 2072785.0, 101: 2061059.0, 135: 1682208.0, 292: 675306.0, 133: 1714292.0,
               99: 2072785.0, 270: 687988.0, 19: 19.0, 382: np.nan, 414: 285176.0, 267: 86914.0, 218: 948971.0,
               398: 405196.0, 287: 137926.0, 155: 1830032.0, 392: 480081.0, 265: 951689.0, 239: 681452.0,
               237: 882671.0}}
df = pd.DataFrame(d)


g = sns.barplot('token', 'value', data=df, hue='variable', capsize=0.1)

df5 = pd.DataFrame(df.groupby(['variable'])['value'].mean().reset_index())
i = 0
for p in g.patches:
    height = p.get_height()

    g.text(p.get_x() + p.get_width() / 2.,
           height + 3,
           "%.3f" % df5.at[i, 'value'],
           ha="center")
    i += 1
plt.show()

enter image description here