是否可以创建函数的表面图和轮廓图,例如u(x,y) = x^2 + y^2
在以下以等式为界的域
r(t) = 1+(cos(4*t))^2, x = r(t)*cos(t),y = r(t)*sin(t), 0 < t < 2*pi
我想要以下散点图的表面图变体。
我还如下使用scipy griddata
from matplotlib.pyplot import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
data = np.array([[ 2.00000000e+00, 0.00000000e+00],
[ 1.89614525e+00, 1.51126793e-01],
[ 1.62613327e+00, 2.60869688e-01],
[ 1.29639187e+00, 3.15328472e-01],
[ 1.03183519e+00, 3.39805963e-01],
[ 9.22330309e-01, 3.87424263e-01],
[ 9.85968247e-01, 5.09806830e-01],
[ 1.16496791e+00, 7.25092951e-01],
[ 1.35481653e+00, 1.00089121e+00],
[ 1.45215333e+00, 1.26290100e+00],
[ 1.39897768e+00, 1.42707450e+00],
[ 1.20351374e+00, 1.44074409e+00],
[ 9.29854857e-01, 1.31248166e+00],
[ 6.63453200e-01, 1.11474417e+00],
[ 4.70396020e-01, 9.55864325e-01],
[ 3.70174853e-01, 9.32786757e-01],
[ 3.33831717e-01, 1.08590518e+00],
[ 3.06157327e-01, 1.37738581e+00],
[ 2.38732323e-01, 1.70413196e+00],
[ 1.15900227e-01, 1.94068353e+00],
[-3.96388724e-02, 1.99329358e+00],
[-1.83621616e-01, 1.84088591e+00],
[-2.79344160e-01, 1.54430632e+00],
[-3.22477316e-01, 1.21965478e+00],
[-3.47231849e-01, 9.87829012e-01],
[-4.09520279e-01, 9.23088740e-01],
[-5.55288737e-01, 1.02352335e+00],
[-7.90735832e-01, 1.21586141e+00],
[-1.07111976e+00, 1.39113164e+00],
[-1.31601256e+00, 1.45381050e+00],
[-1.44544698e+00, 1.36169834e+00],
[-1.42013085e+00, 1.13913085e+00],
[-1.26561597e+00, 8.59376173e-01],
[-1.06700598e+00, 6.06642746e-01],
[-9.34540362e-01, 4.37040778e-01],
[-9.54661396e-01, 3.57053472e-01],
[-1.14896223e+00, 3.28361061e-01],
[-1.46070082e+00, 2.94327457e-01],
[-1.77632959e+00, 2.12929020e-01],
[-1.97334870e+00, 7.85155418e-02],
[-1.97334870e+00, -7.85155418e-02],
[-1.77632959e+00, -2.12929020e-01],
[-1.46070082e+00, -2.94327457e-01],
[-1.14896223e+00, -3.28361061e-01],
[-9.54661396e-01, -3.57053472e-01],
[-9.34540362e-01, -4.37040778e-01],
[-1.06700598e+00, -6.06642746e-01],
[-1.26561597e+00, -8.59376173e-01],
[-1.42013085e+00, -1.13913085e+00],
[-1.44544698e+00, -1.36169834e+00],
[-1.31601256e+00, -1.45381050e+00],
[-1.07111976e+00, -1.39113164e+00],
[-7.90735832e-01, -1.21586141e+00],
[-5.55288737e-01, -1.02352335e+00],
[-4.09520279e-01, -9.23088740e-01],
[-3.47231849e-01, -9.87829012e-01],
[-3.22477316e-01, -1.21965478e+00],
[-2.79344160e-01, -1.54430632e+00],
[-1.83621616e-01, -1.84088591e+00],
[-3.96388724e-02, -1.99329358e+00],
[ 1.15900227e-01, -1.94068353e+00],
[ 2.38732323e-01, -1.70413196e+00],
[ 3.06157327e-01, -1.37738581e+00],
[ 3.33831717e-01, -1.08590518e+00],
[ 3.70174853e-01, -9.32786757e-01],
[ 4.70396020e-01, -9.55864325e-01],
[ 6.63453200e-01, -1.11474417e+00],
[ 9.29854857e-01, -1.31248166e+00],
[ 1.20351374e+00, -1.44074409e+00],
[ 1.39897768e+00, -1.42707450e+00],
[ 1.45215333e+00, -1.26290100e+00],
[ 1.35481653e+00, -1.00089121e+00],
[ 1.16496791e+00, -7.25092951e-01],
[ 9.85968247e-01, -5.09806830e-01],
[ 9.22330309e-01, -3.87424263e-01],
[ 1.03183519e+00, -3.39805963e-01],
[ 1.29639187e+00, -3.15328472e-01],
[ 1.62613327e+00, -2.60869688e-01],
[ 1.89614525e+00, -1.51126793e-01],
[ 2.00000000e+00, -4.89858720e-16],
[ 0.00000000e+00, -1.50000000e+00],
[-1.00000000e+00, -1.00000000e+00],
[ 0.00000000e+00, -1.00000000e+00],
[ 1.00000000e+00, -1.00000000e+00],
[-5.00000000e-01, -5.00000000e-01],
[ 0.00000000e+00, -5.00000000e-01],
[ 5.00000000e-01, -5.00000000e-01],
[-1.50000000e+00, 0.00000000e+00],
[-1.00000000e+00, 0.00000000e+00],
[-5.00000000e-01, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00],
[ 5.00000000e-01, 0.00000000e+00],
[ 1.00000000e+00, 0.00000000e+00],
[ 1.50000000e+00, 0.00000000e+00],
[ 2.00000000e+00, 0.00000000e+00],
[-5.00000000e-01, 5.00000000e-01],
[ 0.00000000e+00, 5.00000000e-01],
[ 5.00000000e-01, 5.00000000e-01],
[-1.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.50000000e+00]])
ua = data[:,0]**2+data[:,1]**2 # u=x^2+y^2
xx,yy = np.meshgrid(np.linspace(-2,2,100),np.linspace(-2,2,100))
Ua = griddata((data[:,0],data[:,1]),ua,(xx,yy),method='cubic')
fig = figure(1)
plot (data[:,0], data[:,1], '*'); #
fig = figure(2)
ax = fig.gca(projection='3d')
ax.plot_wireframe(xx,yy,Ua,rstride=1,cstride=1,linewidth=.5)
答案 0 :(得分:1)
首先要在矩形网格上计算函数!
scipy.interpolate.griddata
插值在凸包上。您可以在the docs中阅读。这意味着它也插在您的裂片之间。这就是为什么您没有获得正确域的原因。内插的准确性也比仅仅计算整个网格的函数固有的低。
plot_wireframe
想要一个已经创建的矩形网格。您需要做的就是在矩形网格上计算功能值。要仅在域边界上绘制值,请将其外部的所有内容都设置为np.NaN
(非数字)。
方法如下:
import matplotlib.pyplot as plt
import numpy as np
# cartesian coordinates
xx,yy = np.meshgrid(np.linspace(-2,2,100),np.linspace(-2,2,100))
# function value across square domain
Ua = xx**2 + yy**2
# polar coordinates
tt = np.arctan2(yy, xx)
rr = np.sqrt(Ua) # re-using x^2 + y^2 -- only works for this function
# r coordinate of domain boundary
domain_boundary = 1 + (np.cos(4*tt))**2
# function value across actual domain, with rest set to NaN
Ua[rr > domain_boundary] = np.NaN
# plotting
fig = plt.figure(2)
ax = fig.gca(projection='3d')
ax.plot_wireframe(xx,yy,Ua,rstride=1,cstride=1,linewidth=.5)
该解决方案并不完美,因为您可以识别结果中的矩形网格。您可以尝试在极坐标中进行操作,如this official matplotlib example所示。