图图绘制区域中的图例重叠

时间:2018-08-24 15:29:07

标签: python pandas legend seaborn

我有一个如下所示的数据框(经过大量预处理后获得)

请找到数据框

d = {'token': {361: '180816_031', 119: '180816_031', 101: '180816_031', 135: '180816_031', 292: '180816_031',
           133: '180816_031', 99: '180816_031', 270: '180816_031', 19: '180816_031', 382: '180816_031',
           414: '180816_031', 267: '180816_031', 218: '180816_031', 398: '180816_031', 287: '180816_031',
           155: '180816_031', 392: '180816_031', 265: '180816_031', 239: '180816_031', 237: '180816_031'},
 'station': {361: 'deneb', 119: 'callisto', 101: 'callisto', 135: 'callisto', 292: 'callisto', 133: 'deneb',
             99: 'callisto', 270: 'callisto', 19: 'deneb', 382: 'callisto', 414: 'deneb', 267: 'callisto',
             218: 'deneb', 398: 'callisto', 287: 'deneb', 155: 'deneb', 392: 'deneb', 265: 'callisto',
             239: 'callisto', 237: 'callisto'},
 'cycle_number': {361: 'cycle09', 119: 'cycle06', 101: 'cycle04', 135: 'cycle01', 292: 'cycle04', 133: 'cycle05',
                  99: 'cycle06', 270: 'cycle07', 19: 'cycle04', 382: 'cycle08', 414: 'cycle04', 267: 'cycle10',
                  218: 'cycle07', 398: 'cycle08', 287: 'cycle09', 155: 'cycle08', 392: 'cycle06', 265: 'cycle02',
                  239: 'cycle09', 237: 'cycle07'},
 'variable': {361: 'adj_high_quality_reads', 119: 'short_pass', 101: 'short_pass', 135: 'cell_mask_bilayers_sum',
              292: 'adj_active_polymerase', 133: 'cell_mask_bilayers_sum', 99: 'short_pass',
              270: 'adj_active_polymerase', 19: 'Unnamed: 0', 382: 'adj_high_quality_reads',
              414: 'num_align_high_quality_reads', 267: 'adj_active_polymerase', 218: 'adj_single_pores',
              398: 'num_align_high_quality_reads', 287: 'adj_active_polymerase', 155: 'cell_mask_bilayers_sum',
              392: 'num_align_high_quality_reads', 265: 'adj_active_polymerase', 239: 'adj_single_pores',
              237: 'adj_single_pores'},
 'value': {361: 99704.0, 119: 2072785.0, 101: 2061059.0, 135: 1682208.0, 292: 675306.0, 133: 1714292.0,
           99: 2072785.0, 270: 687988.0, 19: 19.0, 382: np.nan, 414: 285176.0, 267: 86914.0, 218: 948971.0,
           398: 405196.0, 287: 137926.0, 155: 1830032.0, 392: 480081.0, 265: 951689.0, 239: 681452.0,
           237: 882671.0}}

数据:

          token   station cycle_number                      variable  \
19   180816_031     deneb      cycle04                    Unnamed: 0   
99   180816_031  callisto      cycle06                    short_pass   
101  180816_031  callisto      cycle04                    short_pass   
119  180816_031  callisto      cycle06                    short_pass   
133  180816_031     deneb      cycle05        cell_mask_bilayers_sum   
135  180816_031  callisto      cycle01        cell_mask_bilayers_sum   
155  180816_031     deneb      cycle08        cell_mask_bilayers_sum   
218  180816_031     deneb      cycle07              adj_single_pores   
237  180816_031  callisto      cycle07              adj_single_pores   
239  180816_031  callisto      cycle09              adj_single_pores   
265  180816_031  callisto      cycle02         adj_active_polymerase   
267  180816_031  callisto      cycle10         adj_active_polymerase   
270  180816_031  callisto      cycle07         adj_active_polymerase   
287  180816_031     deneb      cycle09         adj_active_polymerase   
292  180816_031  callisto      cycle04         adj_active_polymerase   
361  180816_031     deneb      cycle09        adj_high_quality_reads   
382  180816_031  callisto      cycle08        adj_high_quality_reads   
392  180816_031     deneb      cycle06  num_align_high_quality_reads   
398  180816_031  callisto      cycle08  num_align_high_quality_reads   
414  180816_031     deneb      cycle04  num_align_high_quality_reads   

         value  
19        19.0  
99   2072785.0  
101  2061059.0  
119  2072785.0  
133  1714292.0  
135  1682208.0  
155  1830032.0  
218   948971.0  
237   882671.0  
239   681452.0  
265   951689.0  
267    86914.0  
270   687988.0  
287   137926.0  
292   675306.0  
361    99704.0  
382        NaN  
392   480081.0  
398   405196.0  
414   285176.0  

我正在尝试使用平滑线创建散点图(下面的预期输出)

Expected Output

我正在使用下面的代码(带有帮助)来复制它们,但是我的图例值在绘图区域中重叠了。OUTPUT PRODUCED using my code

用于产生输出的代码

df['cycle_number'] = df['cycle_number'].str.replace('cycle', '')
df['cycle_number'] = df['cycle_number'].apply(pd.to_numeric)

fig, ax = plt.subplots()
fig.set_size_inches(16, 4)
# sns.pointplot('cycle_number', 'value', data=df, hue='variable', err_style="bars", ci=68)
g2=sns.lmplot('cycle_number', 'value', data=df, hue='variable', ci=2, order=5, truncate=True)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# Put a legend to the right of the current axis
#ax.legend(loc='right', bbox_to_anchor=(1, 0.1))
ax.legend(loc='left', bbox_to_anchor=(1, 0))
for p in ax.patches:
             ax.annotate("%.2f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()),
                 ha='center', va='center', fontsize=11, color='gray', xytext=(0, 20),
                 textcoords='offset points')

plt.show()

请帮助从绘图区域中删除重叠的图例

1 个答案:

答案 0 :(得分:2)

只需替换

ax.legend(loc='left', bbox_to_anchor=(1, 0))

通过

ax.legend(loc=(1.05, 0.2))

您可以根据所需位置修改位置(1.05, 0.2)。这里的值是分数。

enter image description here