训练精度提高,但验证精度保持不变

时间:2018-08-24 07:08:16

标签: validation image-processing keras deep-learning classification

我正在训练使用CNN的服装分类算法。我有大约60000张图像用于10个课程的训练(以80:20的比例进行训练和验证)。分离10000张图像进行测试。

训练准确性会随着时间的推移而提高,但验证准确性却保持不变。训练损失也减少,但验证损失保持不变。 Plot of accuracy

Plot of loss

img_width, img_height = 28, 28
batch_size = 32
samples_per_epoch = 20000
validation_steps = 300
nb_filters1 = 32
nb_filters2 = 64
nb_filters3 = 128
conv1_size = 3
conv2_size = 2
pool_size = 2
classes_num = 10
epochs = 300

#learning_rate = 0.001
learning_rate = 0.01
decay_rate = learning_rate / epochs
momentum = 0.8
sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, 
     nesterov=True)

model = Sequential()
model.add(
    Convolution2D(nb_filters1, conv1_size, conv1_size, border_mode="same", 
    input_shape=(img_width, img_height, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(pool_size, pool_size)))

model.add(Convolution2D(nb_filters2, conv2_size, conv2_size, 
     border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(pool_size, pool_size), dim_ordering='th'))

model.add(Flatten())
model.add(Dense(256))
model.add(Activation("relu"))
model.add(Dropout(0.5))
model.add(Dense(classes_num, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy'])

train_datagen = ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=True
)

达到的训练精度:约96% 验证准确性达到:约92% 测试精度:大约87%

我的问题:我该怎么做才能提高验证准确性或最大程度地减少验证损失?可以进行哪些更改来改进它?

1 个答案:

答案 0 :(得分:3)

您遇到的事物称为Overfitting。 您可以添加更多正则化。最简单的方法是添加另一个Dropout层。

from keras.layers import Dropout
***

    model = Sequential()
    model.add(
        Convolution2D(nb_filters1, conv1_size, conv1_size, border_mode="same", 
        input_shape=(img_width, img_height, 3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(pool_size, pool_size)))
    model.add(Dropout(0.3)  # <- THIS IS ADDED
    model.add(Flatten())
    ***

0.3是将乘以0的神经元数量,因此其值将不包含在后续计算中。您可以尝试添加其他Dropout层并更改其值。您还可以在图层上添加一些偏差,请参见https://keras.io/regularizers/