用于在Python中将幻影行附加到现有数据框的优化算法

时间:2018-08-22 15:01:15

标签: python algorithm pandas dataframe

我有一个数据框,我想将重影行(现有行的副本)附加到该数据框。

       id   month  as_of_date1 turn  age 
119 5712    201401  2014-01-01  9   0
120 5712    201402  2014-02-01  9   1
121 5712    201403  2014-03-01  9   2
122 5712    201404  2014-04-01  9   3
123 5712    201405  2014-05-01  9   4
124 5712    201406  2014-06-01  9   5
125 9130    201401  2014-01-01  9   0
126 9130    201402  2014-02-01  9   1
127 9130    201403  2014-03-01  9   2
128 9130    201404  2014-04-01  9   3
129 9130    201405  2014-05-01  9   4

通过条件选择幻像行: 如果年龄小于转弯年龄,则需要在age== turn ofas_of_date1 == now()

之前附加最后一行

现在我正在使用以下代码,但是由于数据量很大,大约200k行,包含100个字段,因此永远需要

tdf1=tdf.loc[(tdf['age']<tdf['turn'])]
tdf2=tdf1.drop_duplicates(subset=['id'],keep='last')
leads=tdf2.index.tolist()
for lead in leads:
    ttdf=tdf.loc[[lead]]
    diff1 = relativedelta.relativedelta(datetime.datetime(2018,6,1),tdf.loc[lead,'as_of_date1']).months
    diff2=tdf.loc[lead,'turn']-tdf.loc[lead,'age']
    diff=min(diff1,diff2)
    for i in range(0,diff):
        tdf = tdf.append(ttdf, ignore_index=True)

预期结果:

    id   month  as_of_date1 turn  age 
119 5712    201401  2014-01-01  9   0
120 5712    201402  2014-02-01  9   1
121 5712    201403  2014-03-01  9   2
122 5712    201404  2014-04-01  9   3
123 5712    201405  2014-05-01  9   4
124 5712    201406  2014-06-01  9   5
125 9130    201401  2014-01-01  9   0
126 9130    201402  2014-02-01  9   1
127 9130    201403  2014-03-01  9   2
128 9130    201404  2014-04-01  9   3
129 9130    201405  2014-05-01  9   4
130 5712    201406  2014-06-01  9   5
131 5712    201406  2014-06-01  9   5
132 5712    201406  2014-06-01  9   5
133 5712    201406  2014-06-01  9   5
134 9130    201405  2014-05-01  9   4
135 9130    201405  2014-05-01  9   4
136 9130    201405  2014-05-01  9   4
137 9130    201405  2014-05-01  9   4
138 9130    201405  2014-05-01  9   4

如果有人知道更快的算法,我将不胜感激

1 个答案:

答案 0 :(得分:0)

正如在注释中提到的@Parfit附加到数据帧上确实消耗内存,根本不建议在循环内执行此操作。所以我使用以下方法极大地提高了速度

a=[]
for lead in leads:
    ttdf=tdf.loc[[lead]]
    diff1 = relativedelta.relativedelta(datetime.datetime(2018,6,1),tdf.loc[lead,'as_of_date1']).months
    diff2=tdf.loc[lead,'turn']-tdf.loc[lead,'age']
    diff=min(diff1,diff2)
    for i in range(0,diff):
        a.append(ttdf)

tdf = tdf.append(a, ignore_index=True)