For a sample dataframe:
df1 <- structure(list(practice = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), drug = c("123A456",
"123A567", "123A123", "123A567", "123A456", "123A123", "123A567",
"123A567", "998A125", "123A456", "998A125", "123A567", "123A456",
"998A125", "123A567", "123A567", "123A567", "998A125", "123A123",
"998A125", "123A123", "123A456", "998A125", "123A567", "998A125",
"123A456", "123A123", "998A125", "123A567", "123A567", "998A125",
"123A456", "123A123", "123A567", "123A567", "998A125", "123A456"
), items = c(1, 2, 3, 4, 5, 4, 6, 7, 8, 9, 5, 6, 7, 8, 9, 4,
5, 6, 3, 2, 3, 4, 5, 6, 7, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4
), quantity = c(1, 2, 4, 5, 3, 2, 3, 5, 4, 5, 7, 9, 5, 3, 4,
6, 1, 2, 4, 5, 3, 2, 3, 5, 4, 5, 7, 9, 5, 3, 4, 6, 1, 2, 4, 5,
3)), .Names = c("practice", "drug", "items", "quantity"), row.names = c(NA,
-37L), spec = structure(list(cols = structure(list(practice = structure(list(), class = c("collector_integer",
"collector")), drug = structure(list(), class = c("collector_character",
"collector")), items = structure(list(), class = c("collector_integer",
"collector")), quantity = structure(list(), class = c("collector_integer",
"collector"))), .Names = c("practice", "drug", "items", "quantity"
)), default = structure(list(), class = c("collector_guess",
"collector"))), .Names = c("cols", "default"), class = "col_spec"), class = c("tbl_df",
"tbl", "data.frame"))
I want to do various analysis. I think dplyr will be my solution, but I am struggling how to put the function together.
My dataframe is a list of drugs which I want to summarise some of those drugs (as defined by the first three digits of their drug code).
I want to report the sum of those type of drugs (starting with 123) - drug123.items and drug123.quantity BY practice.
I also want to report the totals for all the drugs (all_items and all_quantity) for all of the drugs in my dataframe (I'll eventually express drug123 as a percentage of all the drugs).
I can do bits of the analysis individually i.e. summarise the total items by this for example:
practice <- df1 %>%
group_by(practice) %>%
summarise(all.items = sum(items))
... and this to only look at the drugs I am interested in...
drug123 <- df1 %>%
filter(substr(drug, 1,3)==123)
ALL.drug123 <- aggregate(drug123$quantity, by=list(Category=drug123$practice), FUN=sum)
But how do I put everything together?
I want a dataframe with the following columns:
practice (1,2,3 in the dataframe given).
drug123.items #for drug123
drug123.quantity #for drug123
all.items #for all drugs
all.quantity #for all drugs
Any ideas?
答案 0 :(得分:1)
我认为这是您想要的:
df1 %>%
group_by(practice) %>%
summarize(items_123 = sum(if_else(stringr::str_detect(drug, '^123'), items, 0)),
quantity_123 = sum(if_else(stringr::str_detect(drug, '^123'), quantity, 0)),
all_items = sum(items),
all_quantity = sum(quantity))
# A tibble: 3 x 5
practice items_123 quantity_123 all_items all_quantity
<int> <dbl> <dbl> <dbl> <dbl>
1 1 54 44 75 58
2 2 44 42 66 65
3 3 24 19 35 28