这是我的convolution
网络,它创建训练数据,然后使用激活了convolution
的单个relu
对这些数据进行训练:
train_dataset = []
mu, sigma = 0, 0.1 # mean and standard deviation
num_instances = 10
for i in range(num_instances) :
image = []
image_x = np.random.normal(mu, sigma, 1000).reshape((1 , 100, 10))
train_dataset.append(image_x)
mu, sigma = 100, 0.80 # mean and standard deviation
for i in range(num_instances) :
image = []
image_x = np.random.normal(mu, sigma, 1000).reshape((1 , 100, 10))
train_dataset.append(image_x)
labels_1 = [1 for i in range(num_instances)]
labels_0 = [0 for i in range(num_instances)]
labels = labels_1 + labels_0
print(labels)
x2 = torch.tensor(train_dataset).float()
y2 = torch.tensor(labels).long()
my_train2 = data_utils.TensorDataset(x2, y2)
train_loader2 = data_utils.DataLoader(my_train2, batch_size=batch_size_value, shuffle=False)
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# device = 'cpu'
# Hyper parameters
num_epochs = 50
num_classes = 2
batch_size = 5
learning_rate = 0.001
# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
def __init__(self, num_classes=1):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(32*25*2, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model = ConvNet(num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader2)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader2):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i % 10) == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
我要使用一个预测:
model(x2[10].unsqueeze_(0).cuda())
哪个输出:
tensor([[ 4.4880, -4.3128]], device='cuda:0')
这是否不返回预测形状(100,10)的图像张量?
更新:为了执行预测,我使用:
torch.argmax(model(x2[2].unsqueeze_(0).cuda()), dim=1)
src:https://discuss.pytorch.org/t/argmax-with-pytorch/1528/11
在这种情况下, torch.argmax
返回使预测最大化的值的位置。
答案 0 :(得分:1)
如Koustav所述,您的网络不是“完全卷积”的:尽管您有两个nn.Conv2d
层,但是您的网络上仍然有一个“完全连接”(也称为nn.Linear
)层顶部,仅输出二维(num_classes
)输出张量。
更具体地说,您的网络期望输入1x100x10(单通道,100 x 10像素的图像)。
在self.layer1
之后,您有一个16x50x5张量(卷积中的16个通道,空间尺寸由最大池化层减少)。
在self.layer2
之后,您有一个32x25x2张量(卷积中的32个通道,空间尺寸减少了另一个最大池化层)。
最后,完全连接的self.fc
nn.Linear
层将获取整个32*25*2
维输入张量,并从整个输入中产生一个num_classes
输出。