使用.score()方法时出错:形状(10719,1)和(16,1)未对齐:1(dim 1)!= 16(dim 0)

时间:2018-08-22 03:12:31

标签: python machine-learning error-handling scikit-learn linear-regression

我正在尝试在合适的线性回归器上使用.score()方法,但出现错误。

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.metrics import mean_squared_error

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, 
random_state = 104)
reg = LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
print("R^2: {}".format(reg.score(X_test, y_test)))
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error: {}".format(rmse))
reg.score(y_test.reshape(-1,1), y_pred.reshape(-1,1))

ValueError: shapes (10719,1) and (16,1) not aligned: 1 (dim 1) != 16 (dim 0)

我应该提到,我已经尝试过重塑y_pred和y_test,以便它们匹配,但仍然无法正常工作。我不确定为什么会显示错误(16,1);这些尺寸用于什么?我曾尝试搜索类似的问题,例如Error using sklearn and linear regression: shapes (1,16) and (1,1) not aligned: 16 (dim 1) != 1 (dim 0),但我仍然感到困惑。

编辑:这是形状的输出:

print(X_test.shape, y_test.shape, y_pred.shape)

(10719, 16) (10719, 1) (10719, 1)

1 个答案:

答案 0 :(得分:2)

从scikit docsscore(X, y, sample_weight=None)开始,因此您不会将预测作为第一个参数发送给它。而是发送功能。

因此,最后一行应该是 print(reg.score(X_test, y_test))