尊敬的社区成员,
在数据的预处理期间,将raw_data拆分为标记后,我使用了流行的WordNet Lemmatizer来生成词干。我正在对具有18953个令牌的数据集进行实验。
我的问题是,去词化过程是否会减少语料库的大小? 我很困惑,在这方面请您帮忙。任何帮助表示赞赏!
答案 0 :(得分:1)
合法化将句子中的每个标记(aka form
)转换为引理形式(aka type
):
>>> from nltk import word_tokenize
>>> from pywsd.utils import lemmatize_sentence
>>> text = ['This is a corpus with multiple sentences.', 'This was the second sentence running.', 'For some reasons, there is a need to second foo bar ran.']
>>> lemmatize_sentence(text[0]) # Lemmatized sentence example.
['this', 'be', 'a', 'corpus', 'with', 'multiple', 'sentence', '.']
>>> word_tokenize(text[0]) # Tokenized sentence example.
['This', 'is', 'a', 'corpus', 'with', 'multiple', 'sentences', '.']
>>> word_tokenize(text[0].lower()) # Lowercased and tokenized sentence example.
['this', 'is', 'a', 'corpus', 'with', 'multiple', 'sentences', '.']
如果我们对句子进行词素化,则每个标记都应收到相应的词素形式,因此否。无论是form
还是type
,“单词”的数量都保持不变:
>>> num_tokens = sum([len(word_tokenize(sent.lower())) for sent in text])
>>> num_lemmas = sum([len(lemmatize_sentence(sent)) for sent in text])
>>> num_tokens, num_lemmas
(29, 29)
>>> [lemmatize_sentence(sent) for sent in text] # lemmatized sentences
[['this', 'be', 'a', 'corpus', 'with', 'multiple', 'sentence', '.'], ['this', 'be', 'the', 'second', 'sentence', 'running', '.'], ['for', 'some', 'reason', ',', 'there', 'be', 'a', 'need', 'to', 'second', 'foo', 'bar', 'ran', '.']]
>>> [word_tokenize(sent.lower()) for sent in text] # tokenized sentences
[['this', 'is', 'a', 'corpus', 'with', 'multiple', 'sentences', '.'], ['this', 'was', 'the', 'second', 'sentence', 'running', '.'], ['for', 'some', 'reasons', ',', 'there', 'is', 'a', 'need', 'to', 'second', 'foo', 'bar', 'ran', '.']]
“压缩”一词本身是指在对句子定形后,例如整个语料库中表示的唯一标记的数量。
>>> lemma_vocab = set(chain(*[lemmatize_sentence(sent) for sent in text]))
>>> token_vocab = set(chain(*[word_tokenize(sent.lower()) for sent in text]))
>>> len(lemma_vocab), len(token_vocab)
(21, 23)
>>> lemma_vocab
{'the', 'this', 'to', 'reason', 'for', 'second', 'a', 'running', 'some', 'sentence', 'be', 'foo', 'ran', 'with', '.', 'need', 'multiple', 'bar', 'corpus', 'there', ','}
>>> token_vocab
{'the', 'this', 'to', 'for', 'sentences', 'a', 'second', 'running', 'some', 'is', 'sentence', 'foo', 'reasons', 'with', 'ran', '.', 'need', 'multiple', 'bar', 'corpus', 'there', 'was', ','}
注意:合法化是一个预处理步骤。但是它应该不用词形化形式覆盖原始语料库。