Python3中的argparse错误

时间:2018-08-21 03:26:19

标签: python-3.x opencv parsing

我通过“使用Python的Opencv作为示例”进行学习

然后,我不修复它。

python 3.6。,opencv 3.4,pycharm

代码

import argparse
import cv2
import numpy as np

#epipolar geometry

def build_arg_parser():

    parser = argparse.ArgumentParser(description='find fundamental matrix using the two input stereo  images and draw epipolar lines')
    parser.add_argument("--img-left", dest="img_left", required=True, help="image captured from the left view")

    parser.add_argument("--img-right", dest="img_right", required=True, help="image captured from the right view")
    parser.add_argument("--feature-type", dest="feature_type", required=True, help="Feature extractor that will be used; can be either 'sift' or 'surf'")

    return parser

def draw_lines(img_left, img_right, lines, pts_left, pts_right):
    h, w = img_left.shape
    img_left = cv2.cvtColor(img_left, cv2.COLOR_GRAY2BGR)
    img_right = cv2.cvtColor(img_right, cv2.COLOR_GRAY2BGR)
    for line, pt_left, pt_right in zip(lines, pts_left, pts_right):
        x_start,y_start = map(int, [0, -line[2]/line[1]])
        x_end,y_end = map(int, [w, -(line[2]+line[0]*w)/line[1]])
        color = tuple(np.random.randint(0,255,2).tolist())
        cv2.line(img_left, (x_start,y_start), (x_end,y_end), color, 1)
        cv2.circle(img_left, tuple(pt_left), 5, color, -1)
        cv2.circle(img_right, tuple(pt_right), 5, color, -1)
    return img_left, img_right

def get_descriptors(gray_image, feature):
    if feature_type == 'surf':
        feature_extractor = cv2.xfeatures2d_SURF.create()
    elif feature_type == 'sift':
        feature_extractor = cv2.xfeatures2d_SIFT.create()
    else :
        raise TypeError("invalid feature type; should be either 'surf' or 'sift'")
    keypoints, descriptors = feature_extractor.detectAndCompute(gray_image, None)
    return keypoints, descriptors

if __name__ == '__main__':
    args = build_arg_parser().parse_args()
    img_left = cv2.imread('images/left.jpg', 0)     # left image
    img_right = cv2.imread('images/right.jpg', 0)   # right image
    feature_type = args.feature_type

    if feature_type not in ['sift', 'surf']:
        raise TypeError("invalid ")
    scaling_factor = 1.0
    img_left = cv2.resize(img_left, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA)
    img_right = cv2.resize(img_right, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA)
    kps_left, des_left = get_descriptors(img_left, feature_type)
    kps_right, des_right = get_descriptors(img_right, feature_type)

    # flann parameters
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks=50)

    # get the matches based on ter descriptors
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des_left, des_right, k=2)
    pts_left_image = []
    pts_right_image = []

    # radio test to retain only the good matches
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.7*n.distance:
            pts_left_image.append(kps_left[m.queryIdx].pt)
            pts_right_image.append(kps_right[m.trainIdx].pt)

    pts_left_image = np.float32(pts_left_image)
    pts_right_image = np.float32(pts_right_image)
    F, mask = cv2.findFundamentalMat(pts_left_image, pts_right_image, cv2.FM_LMEDS)

    # selecting only the inliers
    pts_left_image = pts_left_image[mask.ravel()==1]
    pts_right_image = pts_right_image[mask.ravel()==1]

    # drawing the lines on left image and the corresponding feature points on the right image
    lines1= cv2.computeCorrespondEpilines(pts_right_image.reshape(-1, 1, 2), 2, F)
    lines1 = lines1.reshape(-1, 3)
    img_left_lines, img_right_pts = draw_lines(img_left, img_right, lines1, pts_left_image, pts_right_image)

    # drawing the lines on right image and the corresponding feature points on the left image
    lines2 = cv2.computeCorrespondEpilines(pts_left_image.reshape(-1,1,2), 1, F)
    lines2 = lines2.reshape(-1, 3)
    img_right_lines, img_left_pts = draw_lines(img_right, img_left, lines2, pts_right_image, pts_left_image)

    cv2.imshow('epi lines on left image', img_left_lines)
    cv2.imshow('feature points on right image', img_right_pts)
    cv2.imshow('epi lines on right image ', img_right_lines)
    cv2.imshow('feature points on left image', img_left_pts)
    cv2.waitKey()
    cv2.destroyAllWindows()

错误消息

  

用法:Chapter11.py [-h] --img-left IMG_LEFT --img-right IMG_RIGHT                       --feature-type FEATURE_TYPE第11.py章:错误:需要以下参数:--img-left,--img-right,   --feature-type

     

以退出代码2完成的过程

救救我~~

ps。我的路径中有图片。

0 个答案:

没有答案