我正在尝试建立一个给定项目的模型,预测该项目属于哪个商店。
我有一个大约250条记录的数据集,这些记录应该是不同在线商店中的商品。
每个记录由以下内容组成:
Category,Sub Category,Price,Store Identifier(The y variable)
我尝试了多个邻居,尝试了曼哈顿距离,但不幸的是无法获得更好的结果精度〜0.55。 随机森林产生的精度约为0.7。
我的直觉说,模型应该能够预测此问题。我想念什么?
这是数据: https://pastebin.com/nUsSbkp4
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
labelencoder_X_0 = LabelEncoder()
X[:, 0] = labelencoder_X_0.fit_transform(X[:, 0])
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
onehotencoder_0 = OneHotEncoder(categorical_features = [0])
X = onehotencoder_0.fit_transform(X).toarray()
onehotencoder_1 = OneHotEncoder(categorical_features = [1])
X = onehotencoder_1.fit_transform(X).toarray()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# classifier = RandomForestClassifier(n_estimators=25, criterion='entropy', random_state = 0)
classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=2)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
accuracy = classifier.score(X_test, y_test)
print(accuracy)
答案 0 :(得分:3)
KNN 可以使用分类预测变量潜在地产生良好的预测。我以前曾经成功过。但是,还有一些东西没有注意:
尽管如此,您实际上在一次热编码中有一个错误:
调用第一个热编码器后,您将得到一个形状数组(273,21):
onehotencoder_0 = OneHotEncoder(categorical_features = [0])
X = onehotencoder_0.fit_transform(X).toarray()
print(X.shape)
print(X[:5,:])
Out:
(275, 21)
[[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 52. 33.99]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 52. 33.97]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 36. 27.97]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 37. 13.97]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 20. 9.97]]
然后,您在第二列上调用一个热编码,该编码只有两个值(零和一个),结果是:
onehotencoder_1 = OneHotEncoder(categorical_features = [1])
X = onehotencoder_1.fit_transform(X).toarray()
print(X.shape)
print(X[:5,:])
Out:
(275, 22)
[[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 52. 33.99]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 52. 33.97]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 36. 27.97]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 37. 13.97]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 20. 9.97]]
因此,如果您可以解决此问题,或者只是使用实例管道来避免这种情况,并添加数字变量的缩放比例,例如:
from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.neighbors import KNeighborsClassifier
class Columns(BaseEstimator, TransformerMixin):
def __init__(self, names=None):
self.names = names
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X):
return X.loc[:,self.names]
dataset = pd.read_csv('data.csv', header=None)
dataset.columns = ["cat1", "cat2", "num1", "target"]
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, 3]
labelencoder_X_0 = LabelEncoder()
X.iloc[:, 0] = labelencoder_X_0.fit_transform(X.iloc[:, 0])
labelencoder_X_1 = LabelEncoder()
X.iloc[:, 1] = labelencoder_X_1.fit_transform(X.iloc[:, 1])
numeric = ["num1"]
categorical = ["cat1", "cat2"]
pipe = Pipeline([
("features", FeatureUnion([
('numeric', make_pipeline(Columns(names=numeric),StandardScaler())),
('categorical', make_pipeline(Columns(names=categorical), OneHotEncoder(sparse=False)))
])),
])
X = pipe.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# classifier = RandomForestClassifier(n_estimators=25, criterion='entropy', random_state = 0)
classifier = KNeighborsClassifier(n_neighbors=3, metric='minkowski', p=2)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
accuracy = classifier.score(X_test, y_test)
print(accuracy)
Out:
0.7101449275362319
如您所见,这至少将准确性带入了随机阿甘的球场!
因此,您接下来可以尝试的是尝试行距。正在进行将其添加到sklearn here中的讨论,因此可以在Ipython Notebook中检出已发布的代码并尝试。