哪个数据集合并操作将在Pandas中完成?

时间:2018-08-20 20:05:55

标签: python-2.7 pandas join merge

让我们说我有两个熊猫数据框X和Y:

X =
+---+----------+---------+
|   | Value1   | Value2  |
+---+----------+---------+
| A |    1     |   NaN   |
| B |    0     |    0    |
+---+----------+---------+

Y =
+---+----------+---------+
|   | Value1   | Value2  |
+---+----------+---------+
| A |    2     |   NaN   |
| C |    30    |   NaN   |
+---+----------+---------+

我想根据产生的索引(行名)合并/加入它们:

+---+----------+---------+
|   | Value1   | Value2  |
+---+----------+---------+
| A |    1     |    2    |
| B |    0     |    0    |
| C |    30    |   NaN   |
+---+----------+---------+

使用合并和“外部”,结果表在每个表中都有列,而不仅仅是串联。我需要将新行追加到末尾的内容,还需要为匹配索引追加新列。

这是“外部”合并的结果:

+---+----------+---------+----------+---------+
|   | Value1_X | Value2_X| Value1_Y | Value2_Y|
+---+----------+---------+----------+---------+
| A |    1     |   NaN   |    2     |   NaN   |
| B |    0     |    0    |   NaN    |   NaN   |
| C |   NaN    |   NaN   |    30    |   NaN   |
+---+----------+---------+----------+---------+

几乎是我想要的,但是忽略了原始的列标签...

1 个答案:

答案 0 :(得分:2)

关于“外部”合并的结果:

X = 
+---+----------+---------+----------+---------+
|   | Value1_X | Value2_X| Value1_Y | Value2_Y|
+---+----------+---------+----------+---------+
| A |    1     |   NaN   |    2     |   NaN   |
| B |    0     |    0    |   NaN    |   NaN   |
| C |   NaN    |   NaN   |    30    |   NaN   |
+---+----------+---------+----------+---------+

做,X = X.apply(lambda x: pd.Series(x.dropna().values), axis = 1)

这将给

    0     1
A   1.0   2.0
B   0.0   0.0
C   30.0  NaN