我正在尝试使用以下堆栈来制作视频处理应用程序的POC,并希望将处理后的媒体流从c ++应用程序传递到Electron前端GUI。
Electron
|
Nodejs
|
C++ Application
C ++应用程序将读取IP /网络摄像头(仅使用OpenCV来获取数据)并处理输入流(不适用于OpenCV)。我正在尝试找出一种以良好的fps将流从C ++发送到Electron GUI(NodeJS / JS)的方法。现在,我使用node-gyp编译了我的C ++应用,并将其安装为节点包。
此外,我不想过多更改我的C ++应用程序(例如,将OpenCV作为节点包包括在内),因为稍后我将单独使用该C ++应用程序与另一个应用程序集成。
答案 0 :(得分:2)
挑战:
我们想在一个单独的工作线程中执行繁重的代码,同时还要在执行过程中将结果(流数据块)发送回主线程。
NAN(Node.js的本地抽象)已经提供了一种使用(AsyncProgressWorker)进行此操作的方法。
但是,我们不知道在执行过程中是否实际调用了HandleProgressCallback来返回结果。当我们的运行时间快到无法回调时,就会发生这种情况。
建议的解决方案:
我们只是将我们的流输出收集在一个堆栈(StackCollect)中。我们尝试立即清除此堆栈,并将流结果发送回主线程(如果可能)-(StackDrain)。如果我们没有时间立即清除堆栈,则会在执行运行(HandleOKCallback)结束时耗尽(剩下的)。
实施示例:
demo.cpp(我们的C ++节点/电子插件):
#include <nan.h>
#include <node.h>
#include <v8.h>
#include <iostream>
#include <string>
#include <vector>
#include <mutex>
#include <chrono>
#include <thread>
class vSync_File : public Nan::AsyncProgressWorker {
public:
~vSync_File();
vSync_File(Nan::Callback * result, Nan::Callback * chunk);
void Execute(const Nan::AsyncProgressWorker::ExecutionProgress& chunk);
void HandleOKCallback();
void HandleProgressCallback(const char *tout, size_t tout_size);
//needed for stream data collection
void StackCollect(std::string & str_chunk, const Nan::AsyncProgressWorker::ExecutionProgress& tchunk);
//drain stack
void StackDrain();
private:
Nan::Callback * chunk;
//stores stream data - use other data types for different output
std::vector<std::string> stack;
//mutex
std::mutex m;
};
vSync_File::vSync_File(Nan::Callback * result, Nan::Callback * chunk)
: Nan::AsyncProgressWorker(result), chunk(chunk) {}
vSync_File::~vSync_File() {
delete chunk;
}
void vSync_File::StackCollect(std::string & str_chunk, const Nan::AsyncProgressWorker::ExecutionProgress& tchunk) {
std::lock_guard<std::mutex> guardme(m);
stack.push_back(str_chunk);
//attempt drain
std::string dummy = "NA";
tchunk.Send(dummy.c_str(), dummy.length());
}
//Dump out stream data
void vSync_File::StackDrain() {
std::lock_guard<std::mutex> guardme(m);
for (uint i = 0; i < stack.size(); i++) {
std::string th_chunk = stack[i];
v8::Local<v8::String> chk = Nan::New<v8::String>(th_chunk).ToLocalChecked();
v8::Local<v8::Value> argv[] = { chk };
chunk->Call(1, argv, this->async_resource);
}
stack.clear();
}
//Our main job in a nice worker thread
void vSync_File::Execute(const Nan::AsyncProgressWorker::ExecutionProgress& tchunk) {
//simulate some stream output
for (unsigned int i = 0; i < 20; i++) {
std::string out_chunk;
out_chunk = "Simulated stream data " + std::to_string(i);
std::this_thread::sleep_for(std::chrono::milliseconds(300)); //so our HandleProgressCallback is invoked, otherwise we are too fast in our example here
this->StackCollect(out_chunk, tchunk);
}
}
//Back at the main thread - if we have time stream back the output
void vSync_File::HandleProgressCallback(const char *tout, size_t tout_size) {
Nan::HandleScope scope;
this->StackDrain();
}
//Back at the main thread - we are done
void vSync_File::HandleOKCallback () {
this->StackDrain(); //drain leftovers from stream stack
v8::Local<v8::String> result_mess = Nan::New<v8::String>("done reading").ToLocalChecked();
v8::Local<v8::Value> argv[] = { result_mess };
callback->Call(1, argv, this->async_resource);
}
NAN_METHOD(get_stream_data) {
Nan::Callback *result = new Nan::Callback(info[0].As<v8::Function>());
Nan::Callback *chunk = new Nan::Callback(info[1].As<v8::Function>());
AsyncQueueWorker(new vSync_File(result, chunk));
}
NAN_MODULE_INIT(Init) {
//we want stream data
Nan::Set(target, Nan::New<v8::String>("get_stream_data").ToLocalChecked(),
Nan::GetFunction(Nan::New<v8::FunctionTemplate>(get_stream_data)).ToLocalChecked());
}
NODE_MODULE(stream_c_electron, Init)
index.js(电子实现示例):
const stream_c_electron = require('./build/linux_x64/stream_c_electron.node');
stream_c_electron.get_stream_data(function(res) {
//we are done
console.log(res);
}, function(chk) {
console.log("a line streamed");
console.log(chk);
});
package.json:
{
"name": "stream_c_electron",
"version": "1.0.0",
"description": "stream from c++ node addon demo",
"main": "index.js",
"scripts": {
"start": "electron .",
"build_this": "HOME=~/.electron-gyp node-gyp rebuild --target=2.0.8 --arch=x64 --dist-url=https://atom.io/download/electron",
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "11AND2",
"license": "MIT",
"dependencies": {
"nan": "2.11.0"
},
"devDependencies": {
"electron": "2.0.8"
}
}
binding.gyp:
{
"targets": [
{
"target_name": "stream_c_electron",
"sources": [ "c_src/demo.cpp" ],
"conditions": [
[
'OS=="linux"',
{
"cflags": ["-Wall", "-std=c++11"],
'product_dir' : 'linux_x64',
"include_dirs": [
"<!(node -e \"require('nan')\")"
]
}
]
]
}
]
}
答案 1 :(得分:0)
您必须使用emscripten将c++
的内容编译为静态库,并通过import MyLib from "./MyLib";
或require
进行加载,然后使用node --experimental-modules --napi-modules main.mjs
运行。基本上,这个想法是V8引擎能够读取您的本机代码。与纯JavaScript代码相比,它的速度也非常快。
当您知道该怎么做时,这实际上很容易。看一下这个示例代码。它基本上将原生c++ libpng
库用于javascript。唯一棘手的事情实际上是将c++
与javascript
接口。