我有这个数据框:
structure(list(ABEV3 = c(15.2, 14.9, 15.22, 15.15, 15.18, 15.46,
15.49, 15.5, 15.37, 15.49, 15.64, 15.38, 15.3, 15.01, 14.75,
14.9, 14.77, 14.61, 14.21, 14.07, 14.1, 14.17, 14.55, 14.57,
16.46), AEDU3 = c(9.01, 8.56, 8.66, 8.64, 8.44, 8.52, 8.29, 8.27,
8.33, 8.26, 8.66, 8.49, 8.46, 8.4, 8.5, 8.46, 8.4, 8.39, 8.5,
8.68, 8.53, 8.73, 8.31, 7.85, 10.99), ALLL3 = c(7.71, 7.81, 7.57,
7.27, 7.29, 7.07, 7.11, 7.17, 7.27, 7.24, 7.1, 7.1, 7.1, 7.14,
6.79, 6.65, 6.75, 6.93, 7.09, 7.11, 6.95, 6.75, 7, 6.8, 6.64),
BBAS3 = c(22.85, 22.78, 22.8, 22.22, 22.51, 21.11, 20.84,
20.79, 20.67, 20.9, 19.82, 18.95, 18.7, 18.84, 19.13, 19.25,
19.22, 19.38, 19.56, 19.92, 20.37, 20.37, 19.96, 19.19, 19.47
)), class = "data.frame", row.names = c(NA, 25L))
我喜欢将此数据帧切成10个其他数据帧(将作为我的样本),并将其放入列表中。
我这样做了:
library(dplyr)
k_day_regressions = c(5,8,10,12,14,16,18,20,22,25)
dataraw.samples<-list()
for (i in 1:length(k_day_regressions)) {
dataraw.samples[[i]]= slice(dataraw.1, 1:k_day_regressions[i])
}
dataraw.samples
所以,我有10个样本。
如何将LAPPLY函数与子集函数一起使用。我正在这样做,但无法正常工作。
谢谢
答案 0 :(得分:3)
您在这里:
lapply(k_day_regressions, function(x) slice(dataraw.1, 1:x) )
答案 1 :(得分:0)
您可以使用基数R且没有循环来执行此操作。创建拆分变量f
,然后创建split
数据框。
d <- diff(c(0, k_day_regressions))
f <- rep.int(rep(1:length(d)), times = d)
dataraw.samples <- split(dataraw.1, f)
dataraw.samples[[1]]
# ABEV3 AEDU3 ALLL3 BBAS3
#1 15.20 9.01 7.71 22.85
#2 14.90 8.56 7.81 22.78
#3 15.22 8.66 7.57 22.80
#4 15.15 8.64 7.27 22.22
#5 15.18 8.44 7.29 22.51
答案 2 :(得分:0)
一些替代方法。
有dplyr
的人:
library(dplyr)
data.frame(k_day_regressions) %>%
rowwise() %>%
mutate(data = list(df[1:k_day_regressions,])) %>%
ungroup()
# # A tibble: 10 x 2
# k_day_regressions data
# <dbl> <list>
# 1 5 <data.frame [5 x 4]>
# 2 8 <data.frame [8 x 4]>
# 3 10 <data.frame [10 x 4]>
# 4 12 <data.frame [12 x 4]>
# 5 14 <data.frame [14 x 4]>
# 6 16 <data.frame [16 x 4]>
# 7 18 <data.frame [18 x 4]>
# 8 20 <data.frame [20 x 4]>
# 9 22 <data.frame [22 x 4]>
# 10 25 <data.frame [25 x 4]>
您可以将其另存为df2
,并以df2$data[[1]]
的形式访问每个子数据框,等等。
有purrr
的人:
library(purrr)
map(k_day_regressions, ~df[1:.,])
返回包含10个元素(子数据帧)的列表。