对Tensorflow中的多层双向RNN感到困惑

时间:2018-08-19 11:27:00

标签: python tensorflow lstm rnn seq2seq

我正在使用Tensorflow构建多层双向RNN。不过我对实现有些困惑。

我已经构建了创建多层双向RNN的两个函数,第一个可以正常工作,但是我不确定它所做的预测,因为它作为单向多层RNN执行。下面是我的实现:

def encoding_layer_old(rnn_inputs, rnn_size, num_layers, keep_prob, 
                   source_sequence_length, source_vocab_size, 
                   encoding_embedding_size):
    """
    Create encoding layer
    :param rnn_inputs: Inputs for the RNN
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param keep_prob: Dropout keep probability
    :param source_sequence_length: a list of the lengths of each sequence in the batch
    :param source_vocab_size: vocabulary size of source data
    :param encoding_embedding_size: embedding size of source data
    :return: tuple (RNN output, RNN state)
    """
    # Encoder embedding
    enc_embed = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size)

    def create_cell_fw(rnn_size):
        with tf.variable_scope("create_cell_fw"):
            lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2), reuse=False)
            drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return drop
    def create_cell_bw(rnn_size):
        with tf.variable_scope("create_cell_bw"):
            lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2), reuse=False)
            drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return drop    


    enc_cell_fw = tf.contrib.rnn.MultiRNNCell([create_cell_fw(rnn_size) for _ in range(num_layers)])
    enc_cell_bw = tf.contrib.rnn.MultiRNNCell([create_cell_bw(rnn_size) for _ in range(num_layers)])
    ((encoder_fw_outputs, encoder_bw_outputs),(encoder_fw_final_state,encoder_bw_final_state)) = tf.nn.bidirectional_dynamic_rnn(enc_cell_fw,enc_cell_bw, enc_embed, 
                                                        sequence_length=source_sequence_length,dtype=tf.float32)
    encoder_outputs = tf.concat([encoder_fw_outputs, encoder_bw_outputs], 2)
    print(encoder_outputs)
    #encoder_final_state_c=[]#tf.Variable([num_layers] , dtype=tf.int32)
    #encoder_final_state_h=[]#tf.Variable([num_layers] , dtype=tf.int32)
    encoder_final_state = ()
    for x in range((num_layers)):
        encoder_final_state_c=tf.concat((encoder_fw_final_state[x].c, encoder_bw_final_state[x].c), 1)#tf.stack(tf.concat((encoder_fw_final_state[x].c, encoder_bw_final_state[x].c), 1))
        encoder_final_state_h=tf.concat((encoder_fw_final_state[x].h, encoder_bw_final_state[x].h), 1)# tf.stack(tf.concat((encoder_fw_final_state[x].h, encoder_bw_final_state[x].h), 1))
        encoder_final_state =encoder_final_state+ (tf.contrib.rnn.LSTMStateTuple(c=encoder_final_state_c,h=encoder_final_state_h),)

    #encoder_final_state = tf.contrib.rnn.LSTMStateTuple(c=encoder_final_state_c,h=encoder_final_state_h)
    print('before')
    print(encoder_fw_final_state)
    return encoder_outputs, encoder_final_state

我发现了另一个实现here,如下所示:

t

def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, 
                   source_sequence_length, source_vocab_size, 
                   encoding_embedding_size):
    """
    Create encoding layer
    :param rnn_inputs: Inputs for the RNN
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param keep_prob: Dropout keep probability
    :param source_sequence_length: a list of the lengths of each sequence in the batch
    :param source_vocab_size: vocabulary size of source data
    :param encoding_embedding_size: embedding size of source data
    :return: tuple (RNN output, RNN state)
    """
    # Encoder embedding
    enc_embed = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoding_embedding_size)

    def create_cell_fw(rnn_size,x):
        with tf.variable_scope("create_cell_fw_"+str(x)):
            lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2) , reuse=tf.AUTO_REUSE )
            drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return drop
    def create_cell_bw(rnn_size,x):
        with tf.variable_scope("create_cell_bw_"+str(x)):
            lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2) ,reuse=tf.AUTO_REUSE )
            drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return drop
    enc_cell_fw = [create_cell_fw(rnn_size,x) for x in range(num_layers)]
    enc_cell_bw = [create_cell_bw(rnn_size,x) for x in range(num_layers)]

    output=enc_embed
    for n in range(num_layers):
            cell_fw = enc_cell_fw[n]
            cell_bw = enc_cell_bw[n]
            state_fw = cell_fw.zero_state(batch_size, tf.float32)
            state_bw = cell_bw.zero_state(batch_size, tf.float32)

            ((output_fw, output_bw),(encoder_fw_final_state,encoder_bw_final_state))= tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, output,source_sequence_length,
                                                              state_fw, state_bw, dtype=tf.float32)

            output = tf.concat([output_fw, output_bw], axis=2)
            final_state=tf.concat([encoder_fw_final_state,encoder_bw_final_state], axis=2 )
    return output , final_state

此实现的问题是出现形状错误:

Trying to share variable bidirectional_rnn/fw/lstm_cell/kernel, but specified shape (168, 224) and found shape (256, 224).

似乎在创建RNN单元时其他人也遇到了类似的问题,解决方案是使用MultiRNNCell创建分层的单元。但是,如果使用MultiRNNCell,我将无法使用第二种实现,因为multiRNNCell不支持索引。因此,我不会无意遍历单元格列表并创建多个RNN。

非常感谢您的指导。

我正在使用tensorflow 1.3

1 个答案:

答案 0 :(得分:0)

这两个代码似乎确实有些过于复杂。无论如何,我尝试了一个简单得多的版本,并且它起作用了。在您的代码中,尝试从reuse=tf.AUTO_REUSEcreate_cell_fw中删除create_cell_bw。下面是我更简单的实现。

def encoding_layer(input_data, num_layers, rnn_size, sequence_length, keep_prob):

    output = input_data
    for layer in range(num_layers):
        with tf.variable_scope('encoder_{}'.format(layer),reuse=tf.AUTO_REUSE):

            cell_fw = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.truncated_normal_initializer(-0.1, 0.1, seed=2))
            cell_fw = tf.contrib.rnn.DropoutWrapper(cell_fw, input_keep_prob = keep_prob)

            cell_bw = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.truncated_normal_initializer(-0.1, 0.1, seed=2))
            cell_bw = tf.contrib.rnn.DropoutWrapper(cell_bw, input_keep_prob = keep_prob)

            outputs, states = tf.nn.bidirectional_dynamic_rnn(cell_fw, 
                                                              cell_bw, 
                                                              output,
                                                              sequence_length,
                                                              dtype=tf.float32)
            output = tf.concat(outputs,2)
            state = tf.concat(states,2)

    return output, state