我有两个数据框:
x = data.frame(Var1= c("A", "B", "C", "D","E"),Var2=c("F","G","H","I","J"),
Value= c(11, 12, 13, 14,18))
y = data.frame(A= c(11, 12, 13, 14,18), B= c(15, 16, 17, 14,18),C= c(17, 22, 23, 24,18), D= c(11, 12, 13, 34,18),E= c(11, 5, 13, 55,18), F= c(8, 12, 13, 14,18),G= c(7, 5, 13, 14,18),
H= c(8, 12, 13, 14,18), I= c(9, 5, 13, 14,18), J= c(11, 12, 13, 14,18))
Var3 <- rep("time", each=length(x$Var1))
x=cbind(x,Var3)
time=seq(1:length(y[,1]))
y=cbind(y,time)
> x
Var1 Var2 Value Var3
1 A F 11 time
2 B G 12 time
3 C H 13 time
4 D I 14 time
5 E J 18 time
> y
A B C D E F G H I J time
1 11 15 17 11 11 8 7 8 9 11 1
2 12 16 22 12 5 12 5 12 5 12 2
3 13 17 23 13 13 13 13 13 13 13 3
4 14 14 24 34 55 14 14 14 14 14 4
5 18 18 18 18 18 18 18 18 18 18 5
看x
DF,我将变量A
和F
作为第一行。我想在y
DF中选择这两个变量并实现简单的回归:lm(A ~ F, data = y)
,然后将结果保存在列表的第一位置。我将对x
DF的第二行执行回归lm(B ~ G, data = y)
进行同样的操作。
如何将x
中的变量名与y
中的数据进行回归?
修订后的问题:更复杂的回归Var1 ~ Var2 + Var3
怎么样?
答案 0 :(得分:1)
x = data.frame(Var1= c("A", "B", "C", "D","E"),
Var2=c("F","G","H","I","J"),
Value= c(11, 12, 13, 14,18))
y = data.frame(A= c(11, 12, 13, 14,18),
B= c(15, 16, 17, 14,18),
C= c(17, 22, 23, 24,18),
D= c(11, 12, 13, 34,18),
E= c(11, 5, 13, 55,18),
F= c(8, 12, 13, 14,18),
G= c(7, 5, 13, 14,18),
H= c(8, 12, 13, 14,18),
I= c(9, 5, 13, 14,18),
J= c(11, 12, 13, 14,18))
我们可以使用
fitmodel <- function (RHS, LHS) do.call("lm", list(formula = reformulate(RHS, LHS),
data = quote(y)))
modList <- Map(fitmodel, as.character(x$Var2), as.character(x$Var1))
modList[[1]] ## for example
#Call:
#lm(formula = A ~ F, data = y)
#
#Coefficients:
#(Intercept) F
# 4.3500 0.7115
备注:
使用do.call
是为了确保reformulate
在传递给lm
时得到评估。这是理想的,因为它允许update
之类的函数在模型对象上正常工作。参见Showing string in formula and not as variable in lm fit。为了进行比较:
oo <- Map(function (RHS, LHS) lm(reformulate(RHS, LHS), data = y),
as.character(x$Var2), as.character(x$Var1))
oo[[1]]
#Call:
#lm(formula = reformulate(RHS, LHS), data = y)
#
#Coefficients:
#(Intercept) F
# 4.3500 0.7115
as.character
和x$Var1
上的x$Var2
是必要的,因为这两个变量当前是“因数”变量而不是字符串,并且reformulate
无法使用它们。如果在构建stringsAsFactors = FALSE
时将data.frame
放在x
中,则不会出现此类问题。
对您有用吗?不是应该有一个“ for”循环吗?
Map
函数隐藏该“ for”循环。它是mapply
函数的包装。 R中的*apply
系列函数为a syntactic sugar。
您最初的问题是将模型公式构造为Var1 ~ Var2
。
您的新问题需要Var1 ~ Var2 + Var3
。
x$Var3 <- rep("time", each=length(x$Var1))
y$time <- seq(1:length(y[,1]))
## collect multiple RHS variables (using concatenation function `c`)
RHS <- Map(base::c, as.character(x$Var2), as.character(x$Var3))
#str(RHS)
#List of 5 ## oh this list has names! annoying!!
# $ F: chr [1:2] "F" "time"
# $ G: chr [1:2] "G" "time"
# $ H: chr [1:2] "H" "time"
# $ I: chr [1:2] "I" "time"
# $ J: chr [1:2] "J" "time"
LHS <- as.character(x$Var1)
modList <- Map(fitmodel, RHS, LHS) ## `fitmodel` function unchanged
modList[[1]] ## for example
#Call:
#lm(formula = A ~ F + time, data = y)
#
#Coefficients:
#(Intercept) F time
# 5.6 0.5 0.5