gganimate:处理缺失值

时间:2018-08-18 12:26:46

标签: r gganimate

我第一次尝试使用gganimate软件包,但是在处理缺失值(NA)时遇到了问题。抱歉,我的问题微不足道,但找不到任何解决方案。

以下是我尝试做的可复制示例:

# Load libraries:
library(ggplot2)
library(gganimate)
library(dplyr)
library(tidyr)  

# Create some data
  ## Monthly sales are in 100:1000
  ## Expected sales are 400/month, increasing by 5% every year
set.seed(123)
df <- data_frame(Year = rep(2015:2018, each=12),
                 Month = rep(1:12, 4),
                 Sales = unlist(lapply(1:4, 
                           function(x){cumsum(sample(100:1000, 12))})),
                 Expected = unlist(lapply(1:4, 
                           function(x){cumsum(rep(400*1.05^(x-1),12))})))

# gganimate works fine here:
df %>% 
    tidyr::gather("Type", "value", Sales:Expected) %>%
    ggplot(aes(Month, value, col=Type)) +
        geom_point() +
        geom_line() +
        gganimate::transition_time(Year)

# Now data for the end of Year 2018 are missing:
df[df$Year==2018 & df$Month %in% 9:12,"Sales"] = NA

# Plotting with ggplot2 works (and gives a warning about missing values):
df %>% 
    tidyr::gather("Type", "value", Sales:Expected) %>%
    dplyr::filter(Year == "2018") %>%
    ggplot(aes(Month, value, col=Type)) +
        geom_point() +
        geom_line()

# But gganimate fails
df %>% 
    tidyr::gather("Type", "value", Sales:Expected) %>%
    ggplot(aes(Month, value, col=Type)) +
        geom_point() +
        geom_line() +
        gganimate::transition_time(Year) 

# I get the following error: 
## Error in rep(seq_len(nrow(polygon)), splits + 1) : incorrect 'times' argument

我尝试使用enter_()的{​​{1}} / exit_()函数,但没有成功。
谢谢您的帮助。

编辑:(使用MattL的建议)
这有效:

gganimate

我仍然觉得df %>% # filter(!is.na(Sales)) %>% ##Proposed by Matt L but removes Expected values too gather("Type", "value",Sales:Expected) %>% filter(!is.na(value)) %>% ## Remove NA values ggplot(aes(Month, value, col=Type)) + geom_point() + geom_line() + labs(title = "Year: {frame_time}") + ## Add title gganimate::transition_time(Year) + gganimate::exit_disappear(early=TRUE) ## Removes 2017 points appearing in Year 2018 应该能够像gganimate一样处理这些NA值。 谢谢!

1 个答案:

答案 0 :(得分:1)

在“插入” ggplot函数之前过滤掉缺失的值:

df %>% 
    filter(!is.na(Sales)) %>% 
    tidyr::gather("Type", "value", Sales:Expected) %>%
    ggplot(aes(Month, value, col=Type)) +
        geom_point() +
        geom_line() +
        gganimate::transition_time(Year)