我想使用霍夫变换在图像中 detect longest line 。
输入图片
预期产量
当前输出
我们可以看到它检测到错误的行。
在下面的代码中,我应该在哪里寻找该错误?
尽管有一个陷阱。如果将阈值从50增加到150,源代码似乎会产生正确的输出。但是,对我来说,这没有任何意义,因为阈值增加意味着排除了投票率较低的行。
。
源代码
HoughLineTransform.cs
}
答案 0 :(得分:5)
即使乍看之下,算法实际上也很容易理解。 它基于以下 line 公式:
ρ = cos(θ) * x + sin(θ) * y
其中ρ是从原点到直线的垂直距离,而θ是由该垂直线和水平轴形成的角度。
如果知道ρ和θ,就知道直线。如果采用所有可能的对(在给定的精度内)
ρ和θ的值实际上得到了图像中可能存在的所有可能的线。那是什么
Map[ρ, θ ]
个商店。如果希望角度精度为1度,则需要180列。对于ρ,最大距离可能是图像的对角线长度。因此,以一个像素精度为准,行数可以是图像的对角线长度。但是不是
图片,方形图片(在 HoughMap.cs 中):
int maxTheta = 180;
int houghHeight = (int)( Math.Sqrt( 2 ) * Math.Max( imgWidth, imgHeight ) ) / 2;
int doubleHoughHeight = houghHeight * 2;
doubleHoughHeight
是正方形的对角线,这就是为什么要花费Math.Max
的原因!
图像的每个点都映射到 Map 数组上:
ρ θ number of points in that line( pair (ρ, θ) )
Map 0 0 num0
0 1 num1
0 2 num2
. . .
. . .
doubleHoughHeight – 1 179 numN
阈值过滤掉少于50点的线。同样,以下代码过滤掉了行:
//Is this point a local maxima (9x9)
int peak = Accumulator[ rho, theta ];
for( int ly = -4; ly <= 4; ly++ ) {
for( int lx = -4; lx <= 4; lx++ ) {
if( ( ly + rho >= 0 && ly + rho < houghWidth ) && ( lx + theta >= 0 && lx + theta < houghHeight ) ) {
if( (int)Accumulator[ rho + ly, theta + lx ] > peak ) {
peak = Accumulator[ rho + ly, theta + lx ];
ly = lx = 5;
}
}
}
}
if( peak > (int)Accumulator[ rho, theta ] )
continue;
下图中可以看到您遇到的实际问题:
获得的 End 和 Start 点实际上是直线和两条轴的交点:
int x1, y1, x2, y2;
x1 = y1 = x2 = y2 = 0;
double rad = theta * Math.PI / 180;
if( theta >= 45 && theta <= 135 ) {
//y = (r - x Math.Cos(t)) / Math.Sin(t)
x1 = 0;
y1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x1 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
x2 = imageWidth - 0;
y2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x2 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
}
else {
//x = (r - y Math.Sin(t)) / Math.Cos(t);
y1 = 0;
x1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y1 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
y2 = imageHeight - 0;
x2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y2 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
}
lines.Add( new Line( new Point( x1, y1 ), new Point( x2, y2 ) ) );
编辑
您的代码可以正常工作,但无法计算实际长度。我发现的一个解决方案是为2D Map 数组的每个位置存储所有点。在 您的 HoughMap.cs :
public List<Point>[] lstPnts { get; set; }
public void Compute() {
if( Image != null ) {
...
...
...
Map = new int[ doubleHoughHeight, maxTheta ];
//Add this code////////////////////////////////////////////////
//lstPnts is an doubleHoughHeight * maxTheta size array of list Points
lstPnts = new List<Point>[ doubleHoughHeight * maxTheta ];
for(int i = 0; i < doubleHoughHeight * maxTheta; i++ ) {
lstPnts[ i ] = new List<Point>();
}
///////////////////////////////////////////////////////////////
....
....
....
if( ( rho > 0 ) && ( rho <= Map.GetLength( 0 ) ) ) {
Map[ rho, theta ]++;
//Add this line of code////////////////////////////////////////
lstPnts[ rho * maxTheta + theta ].Add( new Point( x, y ) );
///////////////////////////////////////////////////////////////
PointsCount++;
}
....
}
}
在 HoughLineTransform.cs
public List<Line> GetLines( int threshold ) {
if( Accumulator == null ) {
throw new Exception( "HoughMap is null" );
}
int houghWidth = Accumulator.Width;
int houghHeight = Accumulator.Height;
int imageWidth = Accumulator.Image.GetLength( 0 );
int imageHeight = Accumulator.Image.GetLength( 1 );
List<Line> lines = new List<Line>();
if( Accumulator == null )
return lines;
for( int rho = 0; rho < houghWidth; rho++ ) {
for( int theta = 0; theta < houghHeight; theta++ ) {
if( (int)Accumulator[ rho, theta ] > threshold ) {
//Is this point a local maxima (9x9)
int peak = Accumulator[ rho, theta ];
int dd = 10;
for( int ly = -dd; ly <= dd; ly++ ) {
for( int lx = -dd; lx <= dd; lx++ ) {
if( ( ly + rho >= 0 && ly + rho < houghWidth ) && ( lx + theta >= 0 && lx + theta < houghHeight ) ) {
if( (int)Accumulator[ rho + ly, theta + lx ] > peak ) {
peak = Accumulator[ rho + ly, theta + lx ];
ly = lx = dd + 1;
}
}
}
}
if( peak > (int)Accumulator[ rho, theta ] )
continue;
//Map[ rho, theta ] contains these points -> lstPnts[ rho * houghHeight + theta ].
//The points in that list with min and max X coordinate are the Start and End ones
int x1 = houghWidth, y1 = 0, x2 = -1, y2 = 0;
for(int i = 0; i < Accumulator.lstPnts[ rho * houghHeight + theta ].Count; i++ ) {
if( Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X > x2 ) {
x2 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X;
y2 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].Y;
}
if( Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X < x1 ) {
x1 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X;
y1 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].Y;
}
}
//Remove this code
/*int x1, y1, x2, y2;
x1 = y1 = x2 = y2 = 0;
double rad = theta * Math.PI / 180;
if( theta >= 45 && theta <= 135 ) {
//y = (r - x Math.Cos(t)) / Math.Sin(t)
x1 = 0;
y1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x1 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
x2 = imageWidth - 0;
y2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x2 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
}
else {
//x = (r - y Math.Sin(t)) / Math.Cos(t);
y1 = 0;
x1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y1 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
y2 = imageHeight - 0;
x2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y2 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
}*/
lines.Add( new Line( new Point( x1, y1 ), new Point( x2, y2 ) ) );
}
}
}
return lines;
}