我在一个数据框中有一些数据,我想计算month
值之间的百分比变化。问题是我在某些条目中有NA
,并且引发了计算。
irm code price pct.change
1 201807 511130F075A04 4.6600 2.192982
2 201806 511130F075A04 4.5600 1.333333
3 201805 511130F075A04 4.5000 -13.461538
4 201804 511130F075A04 5.2000 NA
5 201803 511130F075A04 NA NA
6 201802 511130F075A04 4.9100 1.867220
7 201801 511130F075A04 4.8200 -5.304519
8 201712 511130F075A04 5.0900 2.414487
9 201711 511130F075A04 4.9700 -3.307393
10 201710 511130F075A04 5.1400 NA
11 201709 511130F075A04 NA NA
12 201708 511130F075A04 5.2900 2.918288
13 201707 511130F075A04 5.1400 66.553255
14 201706 511130F075A04 3.0861 -10.664351
15 201705 511130F075A04 3.4545 -7.241824
问题出在pct.change
列的第4行和第10行。它们是NA
,但我希望使用price
而不是NA
的最新值来计算它们。所需的输出将是(请参阅第4和10行):
irm code price pct.change
1 201807 511130F075A04 4.6600 2.192982
2 201806 511130F075A04 4.5600 1.333333
3 201805 511130F075A04 4.5000 -13.461538
**4 201804 511130F075A04 5.2000 5.906314**
5 201803 511130F075A04 NA NA
6 201802 511130F075A04 4.9100 1.867220
7 201801 511130F075A04 4.8200 -5.304519
8 201712 511130F075A04 5.0900 2.414487
9 201711 511130F075A04 4.9700 -3.307393
**10 201710 511130F075A04 5.1400 -2.835539**
11 201709 511130F075A04 NA NA
12 201708 511130F075A04 5.2900 2.918288
13 201707 511130F075A04 5.1400 66.553255
14 201706 511130F075A04 3.0861 -10.664351
15 201705 511130F075A04 3.4545 -7.241824
我尝试使用标准(x/lead(x) - 1)*100
和一些使用(x/lag(which(!is.na(lead(x))
的变体,但似乎缺少一些东西。是否有一种简单的方法可以在base
甚至dplyr
中完成? 我不想替换NA,我想保留它们。
答案 0 :(得分:2)
@LAP的评论可能是最好的方法。 data.table
library(data.table)
setDT(df)
df[!is.na(price), pct.change := 100*(price/shift(price, type = 'lead') - 1)]
# irm code price pct.change
# 1: 201807 511130F075A04 4.6600 2.192982
# 2: 201806 511130F075A04 4.5600 1.333333
# 3: 201805 511130F075A04 4.5000 -13.461538
# 4: 201804 511130F075A04 5.2000 5.906314
# 5: 201803 511130F075A04 NA NA
# 6: 201802 511130F075A04 4.9100 1.867220
# 7: 201801 511130F075A04 4.8200 -5.304519
# 8: 201712 511130F075A04 5.0900 2.414487
# 9: 201711 511130F075A04 4.9700 -3.307393
# 10: 201710 511130F075A04 5.1400 -2.835539
# 11: 201709 511130F075A04 NA NA
# 12: 201708 511130F075A04 5.2900 2.918288
# 13: 201707 511130F075A04 5.1400 66.553255
# 14: 201706 511130F075A04 3.0861 -10.664351
# 15: 201705 511130F075A04 3.4545 NA
答案 1 :(得分:1)
在Base R中,您可以决定替换:
import os
import sys
sys.path.insert(0, os.path.abspath('.'))
sys.path.insert(0, os.path.abspath('../../'))
project = 'test'
copyright = ''
author = ''
version = ''
release = '0'
extensions = [
'sphinx.ext.autodoc',
]
source_suffix = '.rst'
master_doc = 'index'