在pandas DataFrame中创建具有特定值的列

时间:2018-08-16 14:11:54

标签: python python-3.x pandas dataframe

我有一个DataFrame,其中的列为author(作者姓名),hour(作者发布主题时)和number_of_topics(每个作者一个小时发布了多少个主题)。这是一个示例:

  author hour number_of_topics
0      A  h01                1
1      B  h02                4
2      B  h04                2
3      C  h04                6
4      A  h05                8
5      C  h05                3

我的目标是创建六个专栏(前六个小时),并在其中填充主题数。我尝试使用df.groupby执行此操作,但未成功。 所需的输出:

  author h01 h02 h03 h04 h05 h06
0      A   1   0   0   0   8   0
1      B   0   4   0   2   0   0
2      C   0   0   0   6   3   0 

创建我的DataFrame的代码:

import pandas as pd
df = pd.DataFrame({"author":["A","B", "B","C","A","C"],
                   "hour":["h01","h02","h04","h04","h05","h05"],
                   "number_of_topics":["1","4","2","6","8","3"]})
print(df)

2 个答案:

答案 0 :(得分:1)

pivotreindex配合使用来添加误入列:

cols = ['h{:02d}'.format(x) for x in range(1, 7)]
df = (df.pivot('author','hour','number_of_topics')
        .fillna(0)
        .reindex(columns=cols, fill_value=0)
        .reset_index()
        .rename_axis(None, axis=1))
print (df)
  author h01 h02  h03 h04 h05  h06
0      A   1   0    0   0   8    0
1      B   0   4    0   2   0    0
2      C   0   0    0   6   3    0

或将set_indexunstack

cols = ['h{:02d}'.format(x) for x in range(1, 7)]
df = (df.set_index(['author','hour'])['number_of_topics']
        .unstack(fill_value=0)
        .reindex(columns=cols, fill_value=0)
        .reset_index()
        .rename_axis(None, axis=1))
print (df)
  author h01 h02  h03 h04 h05  h06
0      A   1   0    0   0   8    0
1      B   0   4    0   2   0    0
2      C   0   0    0   6   3    0

答案 1 :(得分:0)

您正在寻找的东西可以通过pivot函数来实现:

df.pivot(index = 'author',columns = 'hour',values = 'number_of_topics').fillna(0)

hour    h01     h02     h04     h05
author              
A       1       0       0       8
B       0       4       2       0
C       0       0       6       3