我有一个零售商代码列表。
我希望根据零售商代码将零售商名称/国家/地区添加到retailer
列中,以便查看结果的人员能够了解他们与哪个零售商相关。
目前,我有这个:
chats$retailer[chats$retailer_code == "npqPjZyMy5"] <- "France"
chats$retailer[chats$retailer_code == "HbNaIqdedB"] <- "Germany"
chats$retailer[chats$retailer_code == "p7VtqCMCr8"] <- "Italy"
chats$retailer[chats$retailer_code == "Tj8vwJvyH1"] <- "Japan"
chats$retailer[chats$retailer_code == "1mRdYODJBH"] <- "UAE"
chats$retailer[chats$retailer_code == "GGdwO3HFDV"] <- "UK"
chats$retailer_code <- NULL # Remove retailer code column
是否有更简洁的方法来实现这一目标?
答案 0 :(得分:0)
这将节省您的一些时间。
library(plyr)
chats$retailer <- revalue(chats$retailer,
c("npqPjZyMy5" = "France", "HbNaIqdedB" = "Germany", "p7VtqCMCr8" = "Italy", "Tj8vwJvyH1" = "Japan","1mRdYODJBH" = "UAE","GGdwO3HFDV" = "UK" ))
答案 1 :(得分:0)
library(tidyverse)
chats%>%
mutate(retailer = case_when(
retailer_code=="npqPjZyMy5"~"France",
retailer_code=="HbNaIqdedB"~"Germany",
retailer_code=="p7VtqCMCr8"~"Italy",
retailer_code=="Tj8vwJvyH1"~"Japan",
retailer_code=="1mRdYODJBH"~"UAE",
retailer_code=="GGdwO3HFDV"~"UK"))%>%
select(-retailer_code)
答案 2 :(得分:0)
或带有查找向量:
static final _textKey = GlobalKey<FormState>();
答案 3 :(得分:0)
我将提供一个基本的R解决方案,以供参考。
# Example data
chats <- data.frame(
other_column = 1:6,
retailer_code = c("npqPjZyMy5", "HbNaIqdedB", "p7VtqCMCr8", "Tj8vwJvyH1", "1mRdYODJBH", "GGdwO3HFDV")
)
# Example key
retailer_key <- data.frame(
retailer_code = c("npqPjZyMy5", "HbNaIqdedB", "p7VtqCMCr8", "Tj8vwJvyH1", "1mRdYODJBH", "GGdwO3HFDV"),
retailer = c("France", "Germany", "Italy", "Japan", "UAE", "UK")
)
# Example join using base::merge
merge(chats, retailer_key)