我正在用Keras训练神经网络模型。我想监视验证损失并在达到特定条件时停止训练。
我知道,对于给定数量的EarlyStopping
回合,如果训练没有任何改善,我可以使用patience
停止训练。
我想要不同的东西。当val_loss
回合后,x
超过n
这样的值时,我想停止训练。
为了清楚起见,假设x
中的0.5
和n
是50
。我只想在epoch
数大于50
并且val_loss
大于0.5
时停止模型的训练。
我如何在Keras中做到这一点??
答案 0 :(得分:1)
您可以通过继承Keras EarlyStopping
回调并使用自己的逻辑覆盖它来定义自己的回调:
from keras.callbacks import EarlyStopping # use as base class
class MyCallBack(EarlyStopping):
def __init__(self, threshold, min_epochs, **kwargs):
super(MyCallBack, self).__init__(**kwargs)
self.threshold = threshold # threshold for validation loss
self.min_epochs = min_epochs # min number of epochs to run
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
if current is None:
warnings.warn(
'Early stopping conditioned on metric `%s` '
'which is not available. Available metrics are: %s' %
(self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
)
return
# implement your own logic here
if (epoch >= self.min_epochs) & (current >= self.threshold):
self.stopped_epoch = epoch
self.model.stop_training = True
一个小例子说明它应该工作:
from keras.layers import Input, Dense
from keras.models import Model
import numpy as np
# Generate some random data
features = np.random.rand(100, 5)
labels = np.random.rand(100, 1)
validation_feat = np.random.rand(100, 5)
validation_labels = np.random.rand(100, 1)
# Define a simple model
input_layer = Input((5, ))
dense_layer = Dense(10)(input_layer)
output_layer = Dense(1)(dense_layer)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='mse', optimizer='sgd')
# Fit with custom callback
callbacks = [MyCallBack(threshold=0.001, min_epochs=10, verbose=1)]
model.fit(features, labels, validation_data=(validation_feat, validation_labels), callbacks=callbacks, epochs=100)