我正在使用SSD上的TensorFlow object detection API对Open Images Dataset对象检测器进行微调。我的训练数据包含不平衡的课程,例如
我想将类别权重添加到分类损失中以提高性能。我怎么做?配置文件的以下部分似乎相关:
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
...
classification_weight: 1.0
localization_weight: 1.0
}
如何更改配置文件以增加每个类的分类损失权重?如果不通过配置文件,建议采取哪种方式?
答案 0 :(得分:3)
API期望直接在注释文件中为每个对象(bbox)分配权重。由于这一要求,使用类权重的解决方案似乎是:
1)如果您有自定义数据集,则可以修改每个对象(bbox)的注释,以将权重字段包括为“对象/权重”。
2)如果您不想修改注释,则可以重新创建 tf_records 文件,以包括bbox的权重。
3)修改API的代码(对我来说似乎很棘手)
我决定参加#2,所以我在此处放置了代码,以为具有两个类(
import os
import io
import glob
import hashlib
import pandas as pd
import xml.etree.ElementTree as ET
import tensorflow as tf
import random
from PIL import Image
from object_detection.utils import dataset_util
# Define the class names and their weight
class_names = ['top', 'dress', ...]
class_weights = [1.0, 0.1, ...]
def create_example(xml_file):
tree = ET.parse(xml_file)
root = tree.getroot()
image_name = root.find('filename').text
image_path = root.find('path').text
file_name = image_name.encode('utf8')
size=root.find('size')
width = int(size[0].text)
height = int(size[1].text)
xmin = []
ymin = []
xmax = []
ymax = []
classes = []
classes_text = []
truncated = []
poses = []
difficult_obj = []
weights = [] # Important line
for member in root.findall('object'):
xmin.append(float(member[4][0].text) / width)
ymin.append(float(member[4][1].text) / height)
xmax.append(float(member[4][2].text) / width)
ymax.append(float(member[4][3].text) / height)
difficult_obj.append(0)
class_name = member[0].text
class_id = class_names.index(class_name)
weights.append(class_weights[class_id])
if class_name == 'top':
classes_text.append('top'.encode('utf8'))
classes.append(1)
elif class_name == 'dress':
classes_text.append('dress'.encode('utf8'))
classes.append(2)
else:
print('E: class not recognized!')
truncated.append(0)
poses.append('Unspecified'.encode('utf8'))
full_path = image_path
with tf.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
#create TFRecord Example
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(file_name),
'image/source_id': dataset_util.bytes_feature(file_name),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
'image/object/truncated': dataset_util.int64_list_feature(truncated),
'image/object/view': dataset_util.bytes_list_feature(poses),
'image/object/weight': dataset_util.float_list_feature(weights) # Important line
}))
return example
def main(_):
weighted_tf_records_output = 'name_of_records_file.record' # output file
annotations_path = '/path/to/annotations/folder/*.xml' # input annotations
writer_train = tf.python_io.TFRecordWriter(weighted_tf_records_output)
filename_list=tf.train.match_filenames_once(annotations_path)
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
sess=tf.Session()
sess.run(init)
list = sess.run(filename_list)
random.shuffle(list)
for xml_file in list:
print('-> Processing {}'.format(xml_file))
example = create_example(xml_file)
writer_train.write(example.SerializeToString())
writer_train.close()
print('-> Successfully converted dataset to TFRecord.')
if __name__ == '__main__':
tf.app.run()
如果您有其他类型的注释,则代码将非常相似,但不幸的是,此代码将无法工作。
答案 1 :(得分:0)
对象检测API丢失的定义如下:https://github.com/tensorflow/models/blob/master/research/object_detection/core/losses.py
尤其是,已实现以下损失类别:
分类损失:
本地化损失:
权重参数用于平衡锚点(优先级框),并且大小为[batch_size, num_anchors]
,除了进行强制负挖矿外。另外,focal loss可以权衡分类良好的示例,而将重点放在困难的示例上。
与极少的肯定示例(带有对象类的边界框)相比,主要类别的不平衡是由于出现了更多的负面示例(没有感兴趣的对象的边界框)。这似乎就是为什么没有将正例中的类不平衡(即正类标签的分布不均)作为对象检测损失的一部分的原因。