我正在尝试为cartpole-v0建立一个双dqn网络,但是该网络似乎没有按预期工作,并停滞在8-9左右的奖励水平。我在做什么错了?
学习阶段的每个步骤:
def make_step(model, target_model, optimizer, criterion, observation, action, reward, next_observation):
inp_obv = torch.Tensor(observation)
q = model(inp_obv)
q_argmax = torch.argmax(q.data)
q = q[action]
inp_next_obv = torch.Tensor(next_observation)
q_next = target_model(inp_next_obv)
q_a_next = q_next[q_argmax]
#LHS of the double DQN equation
obv_reward = q
#RHS of the double DQN equation
target_reward = torch.Tensor([reward]) + GAMMA*q_a_next.detach()
#Backprop
loss = criterion(obv_reward, target_reward) #MSELoss
loss.backward()
代码包装make_step:
optimizer.zero_grad() #RMSprop on net
if e%2 == 0:
target_net.load_state_dict(net.state_dict())
for i in range(len(data)):
observation, action, reward, next_observation = data[i]
make_step(net, target_net, optimizer, criterion, observation, action, reward, next_observation)
GAMMA *= GAMMA
optimizer.step()
我在做什么错?谢谢。
答案 0 :(得分:0)
提高目标网络更新频率即可解决问题。
optimizer.zero_grad() #RMSprop on net
if e % 100 == 0:
target_net.load_state_dict(net.state_dict())
for i in range(len(data)):
observation, action, reward, next_observation = data[i]
make_step(net, target_net, optimizer, criterion, observation, action, reward, next_observation)
GAMMA *= GAMMA
optimizer.step()