作为Pandas groupby: group by semester的后续工作,我需要将Series的MultiIndex折叠为DateTimeIndex。
我已经看过Collapse Pandas MultiIndex to Single Index,但无济于事。我无法使其正常工作。
系列ser
是:
dtime dtime
2016 1 78.0
7 79.0
2017 1 73.0
7 79.0
2018 1 79.0
7 71.0
Name: values, dtype: float64
如何将dtime
折叠为单个DateTimeIndex?
dtime
2016-01-01 78.0
2016-07-01 79.0
2017-01-01 73.0
2017-07-01 79.0
2018-01-01 79.0
2018-07-01 71.0
Name: values, dtype: float64
这是产生我的演示系列ser
的代码:
from datetime import *
import pandas as pd
import numpy as np
np.random.seed(seed=1111)
days = pd.date_range(start="2016-02-15",
end="2018-09-12",
freq="2W")
df = pd.DataFrame({"dtime":days, "values":np.random.randint(50, high=80, size=len(days))}).set_index("dtime")
# group by semester
year = df.index.year.astype(int)
month = (df.index.month.astype(int) - 1) // 6 * 6 + 1
grouped = df.groupby([year, month])
ser = grouped.describe()[("values", "max")].rename("values")
print(ser)
答案 0 :(得分:2)
您需要一起将MultiIndex
或Series
的连接级别转换为datetimes
:
idx = ser.index.get_level_values(0).astype(str) + ser.index.get_level_values(1).astype(str)
ser.index = pd.to_datetime(idx, format='%Y%m')
print(ser)
2016-01-01 78.0
2016-07-01 79.0
2017-01-01 73.0
2017-07-01 79.0
2018-01-01 79.0
2018-07-01 71.0
Name: values, dtype: float64
或者:
dates = pd.to_datetime(year.astype(str) + month.astype(str), format='%Y%m')
grouped = df.groupby(dates)
ser = grouped.describe()[("values", "max")].rename("values")
print (ser)
2016-01-01 78.0
2016-07-01 79.0
2017-01-01 73.0
2017-07-01 79.0
2018-01-01 79.0
2018-07-01 71.0
Name: values, dtype: float64