我正在比较数组以进行同步。使用
arr1 = ['a', 'a', 'a', 'b', 'c', 'f']
arr2 = ['a', 'b', 'b', 'c', 'd']
我不知道如何同步这些数组。我必须弄清楚哪些元素需要添加到一个数组中,同时要记住允许重复。我需要arr1
中的不同元素,但不需要arr2
中的不同元素:
['a', 'a', 'f']
或arr2
中的不同元素,而不是arr1
中的不同元素:
['b', 'd']
不幸的是,-
函数不能用于数组:
arr1 - arr2 # => ['f']
arr2 - arr1 # => ['d']
答案 0 :(得分:1)
这里是TNT's elegant solution的实现,用于删除数组的第一个匹配元素
class Array
def delete_first item
delete_at(index(item) || length)
end
def distinct other, own = self.dup
other.each{|e| own.delete_first(e)}
own
end
end
arr1.distinct arr2 # ["a", "a", "f"]
arr2.distinct arr1 # ["b", "d"]
答案 1 :(得分:0)
这不漂亮!
def array_compare(arr1, arr2)
arr2 = arr2.clone
add_to = []
arr1.each do |el|
if index = arr2.index(el)
arr2.delete_at(index)
else
add_to << el
end
end
return add_to
end
-> arr1 = ['a', 'a', 'a', 'b', 'c,', 'f']
["a", "a", "a", "b", "c,", "f"]
-> arr2 = ['a', 'b', 'b', 'c,', 'd']
["a", "b", "b", "c,", "d"]
-> array_compare(arr1, arr2)
["a", "a", "f"]
-> array_compare(arr2, arr1)
["b", "d"]
答案 2 :(得分:0)
这是一种方法:
实施:
h1 = arr1.inject(Hash.new(0)) { |total, e| total[e] += 1 ;total }
# => {"a"=>3, "b"=>1, "c"=>1, "f"=>1
h2 = arr2.inject(Hash.new(0)) { |total, e| total[e] += 1 ;total }
# => {"a"=>1, "b"=>2, "c"=>1, "d"=>1}
h1.map { |k, v| [k] * [v - h2[k], 0].max }.flatten
# => ["a", "a", "f"]
h2.map { |k, v| [k] * [v - h1[k], 0].max }.flatten
# => ["b", "d"]
答案 3 :(得分:0)
当允许重复时,Ruby的常规Array算法几乎没有用。 尝试单独删除元素:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
==============================================================================
"""Simple MNIST classifier example with JIT XLA and timelines.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import timeline
FLAGS = None
def main(_):
# Import data
with tf.device("/job:localhost/replica:0/task:0/device:XLA_CPU:0"):
mnist = input_data.read_data_sets(FLAGS.data_dir)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
w = tf.get_variable("w",initializer=tf.zeros([784, 10]),use_resource=True)
b = tf.get_variable("b",initializer=tf.zeros([10]),use_resource=True)
y = tf.matmul(x, w) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.int64, [None])
# The raw formulation of cross-entropy,
#
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[1]))
#
# can be numerically unstable.
#
# So here we use tf.losses.sparse_softmax_cross_entropy on the raw
# logit outputs of 'y', and then average across the batch.
cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
config = tf.ConfigProto()
jit_level = 0
if FLAGS.xla:
# Turns on XLA JIT compilation.
jit_level = tf.OptimizerOptions.ON_1
config.graph_options.optimizer_options.global_jit_level = jit_level
run_metadata = tf.RunMetadata()
sess = tf.Session(config=config)
tf.global_variables_initializer().run(session=sess)
# Train
g = tf.Graph()
print(dir(g))
train_loops = 1000
for i in range(train_loops):
batch_xs, batch_ys = mnist.train.next_batch(100)
# Create a timeline for the last loop and export to json to view with
# chrome://tracing/.
if i == train_loops - 1:
sess.run(train_step,
feed_dict={x: batch_xs,
y_: batch_ys},
options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
run_metadata=run_metadata)
trace = timeline.Timeline(step_stats=run_metadata.step_stats)
with open('timeline.ctf.json', 'w') as trace_file:
trace_file.write(trace.generate_chrome_trace_format())
else:
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy,
feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir',
type=str,
default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
parser.add_argument(
'--xla', type=bool, default=True, help='Turn xla via JIT on')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
希望您会有所帮助。