我有关于多个单项研究的数据框架。对三名参与者(ID_AB2)进行了行为干预,并收集了基线和干预条件的数据(PhaseAB2:A =基线; B =干预)。最后,“ Occassions”是一个包含会话号的变量。
我想要做的是编写代码以获取每个参与者每个阶段的最后三个值,然后计算平均值。
RateAB2 <- c(8, 4, 5, 5, 5, 4, 8, 7, 8, 5, 4, 8, 7, 4, 7, 7, 4, 3, 4, 4, 4, 5, 9, 6, 16, 13, 8, 9, 15, 17, 9, 10, 7, 3, 2, 4, 3, 3, 3, 7, 13, 18, 12, 18, 14, 17, 19, 15) %>% as.numeric()
PhaseAB2 <- rep(c("A", "B"), each = 8, len = 48)
OccasionsAB2 <- rep(1:16, len = 48)
ID_AB2 <- rep(c("C1", "C2", "C3"), each = 16)
db5 <- data.frame(ID_AB2, OccasionsAB2, PhaseAB2, RateAB2)
我当时想使用dbdplyr::filter(OccasionsAB2 == ...)
,但是代码将严格依赖于每个特定的数据集,并且无法为具有不同观察值的参与者选择不同的位置。
感谢您的帮助!
答案 0 :(得分:5)
library(dplyr)
RateAB2 <- c(8, 4, 5, 5, 5, 4, 8, 7, 8, 5, 4,
8, 7, 4, 7, 7, 4, 3, 4, 4, 4, 5,
9, 6, 16, 13, 8, 9, 15, 17, 9,
10, 7, 3, 2, 4, 3, 3, 3, 7, 13,
18, 12, 18, 14, 17, 19, 15) %>%
as.numeric()
PhaseAB2 <- rep(c("A", "B"), each = 8, len = 48)
OccasionsAB2 <- rep(1:16, len = 48)
ID_AB2 <- rep(c("C1", "C2", "C3"), each = 16)
db5 <- data.frame(ID_AB2, OccasionsAB2, PhaseAB2, RateAB2)
db5 %>%
group_by(ID_AB2, PhaseAB2) %>% # for each ID and Phase
top_n(3, OccasionsAB2) %>% # keep last 3 occasions
summarise(MEAN = mean(RateAB2)) %>% # get the average
ungroup() # forget the grouping
# # A tibble: 6 x 3
# ID_AB2 PhaseAB2 MEAN
# <fct> <fct> <dbl>
# 1 C1 A 6.33
# 2 C1 B 6
# 3 C2 A 6.67
# 4 C2 B 12
# 5 C3 A 4.33
# 6 C3 B 17
您可以将summarise
的过去更新为
summarise(MEAN = mean(RateAB2),
OccasionSequence = paste0(OccasionsAB2, collapse = ","))
还可以获取每种情况下使用的场合的ID(作为字符串)。