我在Excel中有一个热图,我试图在R中重新创建。它的基本数据用于RFM分割,并且在excel中,颜色范围很大,但是我一直在努力在R中获得如此平滑的颜色渐变,并且尝试了多种方法但无法达到相同的平滑梯度。
我的Excel热图如下:
我在R中的热图看起来像这样:
我的R代码是:
cols <- brewer.pal(9, 'RdYlGn')
ggplot(xxx)+
geom_tile(aes(x= mon, y = reorder(freq, desc(freq)), fill = n)) +
facet_grid(rec~.) +
# geom_text(aes(label=n)) +
# scale_fill_gradient2(midpoint = (max(xxx$n)/2), low = "red", mid =
"yellow", high = "darkgreen") +
# scale_fill_gradient(low = "red", high = "blue") +
scale_fill_gradientn(colours = cols) +
# scale_fill_brewer() +
labs(x = "monetary", y= "frequency") +
scale_x_discrete(expand = c(0,0)) +
scale_y_discrete(expand = c(0,0)) +
coord_fixed(ratio= 0.5) +
theme(legend.position = "none")
我如何应用ColorRampPalette
来获得与Excel相同的平滑颜色渐变或任何可以给我带来更平滑渐变的方法? R中的渐变不是很好。
我无法在这里发布我的数据集,因为它有30,000条记录。我使用dput(head(df))确实将我的数据集的头部转储如下:
structure(list(rfm_score = c(111, 112, 113, 114, 115, 121), n = c(2624L,
160L, 270L, 23L, 5L, 650L), rec = structure(c(1L, 1L, 1L, 1L,
1L, 1L), .Label = c("1", "2", "3", "4", "5"), class = "factor"),
freq = structure(c(1L, 1L, 1L, 1L, 1L, 2L), .Label = c("1",
"2", "3", "4", "5"), class = "factor"), mon = structure(c(1L,
2L, 3L, 4L, 5L, 1L), .Label = c("1", "2", "3", "4", "5"), class =
"factor")), row.names = c(NA,
6L), class = "data.frame")
答案 0 :(得分:2)
您可以使用tableHTML
软件包:
这是我正在使用的数据:
df <- structure(list(rfm_score = c(111, 112, 113, 114, 115, 121), n = c(2624L,
160L, 270L, 23L, 5L, 650L), rec = structure(c(1L, 1L, 1L, 1L,
1L, 1L), .Label = c("1", "2", "3", "4", "5"), class = "factor"),
freq = structure(c(1L, 1L, 1L, 1L, 1L, 2L), .Label = c("1",
"2", "3", "4", "5"), class = "factor"), mon = structure(c(1L,
2L, 3L, 4L, 5L, 1L), .Label = c("1", "2", "3", "4", "5"), class =
"factor")), row.names = c(NA,
6L), class = "data.frame")
加载程序包:
library(tableHTML)
重塑data.frame
以反映您的结构:
df <- data.table::dcast(df,
rec + freq ~ mon,
value.var = "rfm_score",
fill = "")
rec freq 1 2 3 4 5
1 1 1 111 112 113 114 115
2 1 2 121
然后可以创建一个tableHTML
对象,并对其应用CSS来调整样式:
步骤如下:
tableHTML
对象"Mon."
的背景颜色rec
将颜色等级添加到freq
和"Blues"
列""
)为白色RAG
(红色,琥珀色,绿色)颜色等级应用于Mon.
列Mon.
下的标题应用不同的蓝色阴影\
df %>%
tableHTML(rownames = FALSE,
second_headers = list(c(2, 5),
c("", "Mon.")),
caption = "<br>RFM Segmentation <br> Count of Cust in each Segment",
widths = c(rep(80, 2), rep(100, 5))) %>%
add_css_caption(css = list(c("background-color", "border"),
c("#F9E9DC", "1px solid black"))) %>%
add_css_second_header(css = list("background-color",
"lightgray"),
second_headers = 2) %>%
add_css_conditional_column(conditional = "colour_rank",
colour_rank_css = make_css_colour_rank_theme(list(rec = df$rec),
RColorBrewer::brewer.pal(5, "Blues")),
columns = 1) %>%
add_css_conditional_column(conditional = "colour_rank",
colour_rank_css = make_css_colour_rank_theme(list(freq = df$freq),
RColorBrewer::brewer.pal(5, "Blues")),
columns = 2) %>%
add_css_conditional_column(conditional = "==",
value = "",
css = list(c("background-color", "color"),
c("white", "white")),
columns = 3:7) %>%
add_css_conditional_column(conditional = "colour_rank",
colour_rank_theme = "RAG",
columns = 3:7,
decreasing = TRUE) %>%
add_css_header(css = list("background-color",
"#EFF3FF"),
header = 3) %>%
add_css_header(css = list("background-color",
"#BDD7E7"),
header = 4) %>%
add_css_header(css = list("background-color",
"#6BAED6"),
header = 5) %>%
add_css_header(css = list("background-color",
"#3182BD"),
header = 6) %>%
add_css_header(css = list("background-color",
"#08519C"),
header = 7)
结果如下:
答案 1 :(得分:0)
主要问题是gradientn()
将产生线性色标。查看在Excel中完成的示例,值1显示为红色,200显示为黄色,2000显示为绿色。我不知道Excel如何缩放比例(我想是百分位数吗?),但是它绝对不是线性的。
如果线性值很重要,并且转换此数据不合适,则Excel中的色标会产生误导。看起来值的分布范围很广,但实际上,您的大多数值都是相似的,因此很低,如ggplot2
色标所示。
如果对数值进行对数转换是合理或适当的,则请执行此操作。这样可以使您获得与Excel相似的缩放比例,但是对于查看器来说更清晰。
这里是一个例子:
library(ggplot2)
library(RColorBrewer)
set.seed(123) ; rn = rnorm(25, mean = 5, sd = 2)
df = data.frame(monetary = rep(seq(5),5),
frequency = sort(rep(seq(5),5)),
val = 10^rn)
pal = brewer.pal(9, "RdYlGn")
# mostly red, a few green (very high) values
ggplot(df, aes(monetary, frequency)) +
geom_tile(aes(fill = val)) +
scale_fill_gradientn(colors = pal)
# log transforming evens out scale
ggplot(df, aes(monetary, frequency)) +
geom_tile(aes(fill = log10(val))) +
scale_fill_gradientn(colors = pal)