from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
import rospy
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Vector3
from tf.transformations import euler_from_quaternion, quaternion_from_euler
global yaw
global i
FLAGS = tf.app.flags.FLAGS
# classify_image_graph_def.pb:
# Binary representation of the GraphDef protocol buffer.
# imagenet_synset_to_human_label_map.txt:
# Map from synset ID to a human readable string.
# imagenet_2012_challenge_label_map_proto.pbtxt:
# Text representation of a protocol buffer mapping a label to synset ID.
tf.app.flags.DEFINE_string(
'model_dir', '/tmp/imagenet',
"""Path to classify_image_graph_def.pb, """
"""imagenet_synset_to_human_label_map.txt, and """
"""imagenet_2012_challenge_label_map_proto.pbtxt.""")
tf.app.flags.DEFINE_string('image_file', '',
"""Absolute path to image file.""")
tf.app.flags.DEFINE_integer('num_top_predictions', 1,
"""Display this many predictions.""")
# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
def run_inference_on_image(image):
"""Runs inference on an image.
Args:
image: Image file name.
Returns:
Nothing
"""
if not tf.gfile.Exists(image):
tf.logging.fatal('File does not exist %s', image)
image_data = tf.gfile.FastGFile(image, 'rb').read()
# Creates graph from saved GraphDef.
create_graph()
with tf.Session() as sess:
# Some useful tensors:
# 'softmax:0': A tensor containing the normalized prediction across
# 1000 labels.
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048
# float description of the image.
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
# encoding of the image.
# Runs the softmax tensor by feeding the image_data as input to the graph.
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
predictions = sess.run(softmax_tensor,
{'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
# Creates node ID --> English string lookup.
node_lookup = NodeLookup()
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
with open("Textspeech.csv", "a") as text_file:
text_file.write("\t%s" %format(human_string))
def maybe_download_and_extract():
"""Download and extract model tar file."""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def callback1(msg):
x = msg.pose.pose.position.x
y = msg.pose.pose.position.y
rospy.loginfo('X:{}, Y{}'.format(x, y))
'''
def callback2(msg):
global yaw
global i
r = msg.x
p = msg.y
yaw = msg.z
if(i==1):
with open("Textspeech.csv", "a") as text_file:
text_file.write("\n%5f" % (yaw))
i = 2
'''
def get_rotation (msg):
global roll, pitch, yaw, i
orientation_q = msg.pose.pose.orientation
orientation_list = [orientation_q.x, orientation_q.y, orientation_q.z, orientation_q.w]
(roll, pitch, yaw) = euler_from_quaternion (orientation_list)
print (yaw)
i = 1
if (i==1):
with open("Textspeech.csv", "a") as text_file:
text_file.write("\n%5f" % (yaw))
i = 2
def main(_):
global yaw
global i
i = 1
rospy.init_node('test', anonymous=True)
#rospy.Subscriber("/odom", Odometry, callback1) #If needed for position information
rospy.Subscriber("/odom", Odometry, get_rotation)
maybe_download_and_extract()
image = (FLAGS.image_file if FLAGS.image_file else
os.path.join(FLAGS.model_dir, 'cropped_panda.jpg'))
run_inference_on_image(image)
#Odometry subscriber
#rospy.spin()
if __name__ == '__main__':
tf.app.run()
carton
0.342085
0.347670
0.353255
2.513623
2.520255
2.526713
2.533345
2.539803
2.546086
2.555511
2.561445
2.567379
2.573139
2.579073
2.585007
2.591290
2.600715
2.606998
2.613107
2.619041
2.624626
2.629862
2.634749
2.639287
2.646443
2.651679
2.657264
2.663372
2.670179
2.677161
2.684316
2.694614
2.701246
2.707355
2.712940
2.718001
2.722888
2.727601
2.732487
2.740516
2.746450
2.752733
2.759366
2.766172
2.772805
2.779262
2.788163
2.793923
2.799334
2.804570
2.810155
2.816089
2.822372
2.828830
2.838778
2.845236
2.851519 space heater
2.857628
2.863387
2.869147
2.874732
2.883109
2.888694
2.894629
2.900563
2.906846
2.913304
2.919761
2.926219
2.935644
2.941752
2.947687
2.953272
2.958857
2.964442
2.970201
2.979277
2.985560
2.992192
2.998476
3.004759
3.010693
3.016453
3.021863
3.029717
3.034953
3.040189
3.045774
3.051883
3.058166 desk
-0.597775
-0.591667
-0.582940
-0.577355
-0.571944
-0.566185
-0.560425