Python3.x:在相同x处减去y值

时间:2018-08-13 00:11:33

标签: python-3.x

我有两个x值略有不同的数据集。 我想用相同的x值减去两个数据集的y值。以下是数据的样子:

第一个数据:

data1_x data1_y1    data1_y2    data1_y3
-566.692382 0   0   0
-456.971091 0   0   0
-347.2498   0   0   0
-237.528509 0   0   0
-127.807218 0   0   0
-18.085927  0   0   0
91.635364   0   0   0
201.356655  0   0   0
311.077946  0   0   0
420.799237  0   0   0
530.520528  0   0   0
640.241819  0   0   0
749.96311   0   0   0
859.684401  0   0   0
969.405692  0   0   0
1079.126983 0   0   0
1188.848274 0   0   0
1298.569565 0   0   0
1408.290856 0   0   0
1518.012147 0   0   0
1627.733439 0   0   0
1737.45473  0   0   0
1847.176021 0   0   0
1956.897312 0   0   0
2066.618603 0   0   0
2176.339894 0   0   0
2286.061185 0   0   0
2395.782476 0   0   0
2505.503767 0   0   0
2615.225058 0   0   0
2724.946349 0   0   0
2834.66764  0   0   0
2944.388931 0   0   0
3054.110222 0   0   0
3163.831513 0.000756    0   0.000225
3273.552804 0.007979    0   0.005741
3383.274095 0.155249    0   0.141201
3492.995386 1   0   0.987494
3602.716677 0.966901    0   1
3712.437968 0.155149    0   0.160298
3822.159259 0.013988    0   0.013816
3931.88055  0.004039    0   0.002835
4041.601841 0.002268    0.029346    0.002405
4151.323132 0.000577    0.028708    0.000225
4261.044424 0.000298    0.336204    0.000256
4370.765715 0   0.889952    0.000307
4480.487006 0   1   0.000133
4590.208297 0   0.73429 0.000194
4699.929588 0   0.540032    0
4809.650879 0   0.481659    0
4919.37217  0   0.227113    0
5029.093461 0   0.155662    0
5138.814752 0   0.051675    0
5248.536043 0   0.023285    0
5358.257334 0.000318    0.035726    0
5467.978625 0   0   0
5577.699916 0   0.016268    0
5687.421207 0   0   0.000133
5797.142498 0   0   0
5906.863789 0   0.026794    0
6016.58508  0   0.004466    0
6126.306371 0   0.004466    0
6236.027662 0   0   0
6345.748953 0   0   0
6455.470244 0   0   0
6565.191535 0   0   0
6674.912826 0   0   0
6784.634117 0   0   0
6894.355408 0   0   0
7004.0767   0   0   0
7113.797991 0   0   0
7223.519282 0   0   0
7333.240573 0   0   0
7442.961864 0   0   0
7552.683155 0   0   0
7662.404446 0   0   0
7772.125737 0   0   0
7881.847028 0   0   0
7991.568319 0   0   0
8101.28961  0   0   0
8211.010901 0   0   0
8320.732192 0   0   0
8430.453483 0   0   0
8540.174774 0   0   0
8649.896065 0   0   0
8759.617356 0   0   0
8869.338647 0   0   0
8979.059938 0   0   0
9088.781229 0   0   0
9198.50252  0   0   0
9308.223811 0   0   0
9417.945102 0   0   0
9527.666393 0   0   0
9637.387685 0   0   0
9747.108976 0   0   0
9856.830267 0   0   0
9966.551558 0   0   0
10076.27285 0   0   0
10185.99414 0   0   0
10295.71543 0   0   0
10405.43672 0   0   0
10515.15801 0   0   0
10624.8793  0   0   0
10734.6006  0   0   0
10844.32189 0   0   0
10954.04318 0   0   0
11063.76447 0   0   0
11173.48576 0   0   0
11283.20705 0   0   0
11392.92834 0   0   0
11502.64963 0   0   0
11612.37092 0   0   0
11722.09221 0   0   0
11831.81351 0   0   0
11941.5348  0   0   0
12051.25609 0   0   0
12160.97738 0   0   0
12270.69867 0   0   0
12380.41996 0   0   0
12490.14125 0   0   0
12599.86254 0   0   0
12709.58383 0   0   0
12819.30513 0   0   0
12929.02642 0   0   0
13038.74771 0   0   0
13148.469   0   0   0
13258.19029 0   0   0
13367.91158 0   0   0
13477.63287 0   0   0
13587.35416 0   0   0
13697.07545 0   0   0
13806.79674 0   0   0
13916.51804 0   0   0
14026.23933 0   0   0
14135.96062 0   0   0
14245.68191 0   0   0
14355.4032  0   0   0
14465.12449 0   0   0
14574.84578 0   0   0
14684.56707 0   0   0
14794.28836 0   0   0
14904.00965 0   0   0
15013.73095 0   0   0
15123.45224 0   0   0
15233.17353 0   0   0
15342.89482 0   0   0
15452.61611 0   0   0
15562.3374  0   0   0
15672.05869 0   0   0
15781.77998 0   0   0
15891.50127 0   0   0
16001.22257 0   0   0
16110.94386 0   0   0
16220.66515 0   0   0
16330.38644 0   0   0
16440.10773 0   0   0
16549.82902 0   0   0
16659.55031 0   0   0
16769.2716  0   0   0
16878.99289 0   0   0
16988.71418 0   0   0
17098.43548 0   0   0
17208.15677 0   0   0
17317.87806 0   0   0
17427.59935 0   0   0
17537.32064 0   0   0
17647.04193 0   0   0
17756.76322 0   0   0
17866.48451 0   0   0
17976.2058  0   0   0
18085.9271  0   0   0
18195.64839 0   0   0
18305.36968 0   0   0
18415.09097 0   0   0
18524.81226 0   0   0
18634.53355 0   0   0
18744.25484 0   0   0
18853.97613 0   0   0
18963.69742 0   0   0
19073.41871 0   0   0
19183.14001 0   0   0.000297
19292.8613  0   0   0
19402.58259 0   0   0
19512.30388 0   0   0
19622.02517 0   0   0
19731.74646 0   0   0
19841.46775 0   0   0
19951.18904 0   0   0
20060.91033 0   0   0
20170.63162 0   0   0
20280.35292 0   0   0
20390.07421 0   0   0
20499.7955  0   0   0
20609.51679 0   0   0
20719.23808 0   0   0
20828.95937 0   0   0
20938.68066 0   0   0
21048.40195 0   0   0
21158.12324 0   0   0
21267.84454 0   0   0

第二个数据看起来像

data2_x data2_y1    data2_y2    data2_y3
-613.863532 0   0   0
-504.331019 0   0   0
-394.798507 0   0   0
-285.265994 0   0   0
-175.733482 0   0   0
-66.200969  0   0   0
43.331543   0   0   0
152.864056  0   0   0
262.396569  0   0   0
371.929081  0   0   0
481.461594  0   0   0
590.994106  0   0   0
700.526619  0   0   0
810.059131  0   0   0
919.591644  0   0   0
1029.124156 0   0   0
1138.656669 0   0   0
1248.189181 0   0   0
1357.721694 0   0   0
1467.254207 0   0   0
1576.786719 0   0   0
1686.319232 0   0   0
1795.851744 0   0   0
1905.384257 0   0   0
2014.916769 0   0   0
2124.449282 0   0   0
2233.981794 0   0   0
2343.514307 0   0   0
2453.04682  0   0   0
2562.579332 0   0   0
2672.111845 0   0   0
2781.644357 0   0   0
2891.17687  0   0   0
3000.709382 0   0.00421 0
3110.241895 0   0   0
3219.774407 0   0.000472    0.000258
3329.30692  0.005998    0.005817    0.046254
3438.839433 0.126953    0.025986    0.447706
3548.371945 0.595733    0.007664    1
3657.904458 0.977669    0.010667    0.981762
3767.43697  0.846061    0.000766    0.481531
3876.969483 0.787706    0   0.182611
3986.501995 1   0   0.102414
4096.034508 0.964644    0.03512 0.051297
4205.56702  0.54548 0.161153    0.017741
4315.099533 0.178064    0.558853    0.003784
4424.632045 0.037034    0.789553    0.001666
4534.164558 0.007972    0.96508 0.000394
4643.697071 0.003013    1   0
4753.229583 0.002961    0.903092    0.000163
4862.762096 0.002831    0.669578    0.000293
4972.294608 0.001025    0.375463    0.000108
5081.827121 0.000761    0.251614    0.000161
5191.359633 0   0.139304    0
5300.892146 0   0.044527    0
5410.424658 0.000413    0.008105    0
5519.957171 0   0.003013    6.50E-05
5629.489684 0   0   0
5739.022196 0.000211    0.003381    0
5848.554709 0   0.003633    0
5958.087221 0   0.004651    0.000121
6067.619734 0   0.017901    0
6177.152246 0   0.001134    0
6286.684759 0   0.002394    0
6396.217271 0   0.000462    0
6505.749784 0   0   0
6615.282297 0   0   0
6724.814809 0   0   0
6834.347322 0   0.000504    0
6943.879834 0   0.002016    0
7053.412347 0   0.004326    0
7162.944859 0.000185    0.00546 6.00E-05
7272.477372 0   0   0
7382.009884 0   0   0
7491.542397 0   0   0
7601.074909 0   0   0.000131
7710.607422 0   0   0
7820.139935 0   0   0
7929.672447 0   0   0
8039.20496  0   0   0
8148.737472 0   0   0
8258.269985 0   0   0
8367.802497 0.000273    0   0
8477.33501  0   0   0
8586.867522 0   0.001522    0
8696.400035 0   0   0
8805.932548 0   0   0.000133
8915.46506  0   0   0
9024.997573 0   0   0
9134.530085 0   0   7.20E-05
9244.062598 0   0   0
9353.59511  0   0   0
9463.127623 0   0   0
9572.660135 0   0   0
9682.192648 8.50E-05    0   0
9791.725161 0   0   0
9901.257673 0   0   0
10010.79019 0   0   0
10120.3227  0   0   6.60E-05
10229.85521 0   0   0.000128
10339.38772 0   0   0
10448.92024 0   0   0
10558.45275 0   0   0
10667.98526 0   0   0
10777.51777 0   0   6.60E-05
10887.05029 0   0   6.70E-05
10996.5828  0   0   3.00E-05
11106.11531 0   0   0
11215.64782 0   0   0
11325.18034 0   0   0
11434.71285 0   0   0
11544.24536 0   0   0
11653.77787 0   0   0
11763.31039 0   0   0
11872.8429  0   0   0
11982.37541 0   0   0
12091.90792 0   0   0
12201.44044 0   0   0
12310.97295 0   0   0
12420.50546 0   0   0
12530.03797 0   0   0
12639.57049 0   0   0
12749.103   0   0   0
12858.63551 0   0   0
12968.16803 0   0   0
13077.70054 0   0   0
13187.23305 0   0   0
13296.76556 0   0   0
13406.29808 0   0   0
13515.83059 0   0   0
13625.3631  0   0   0.00011
13734.89561 0   0   0
13844.42813 0   0   0
13953.96064 0   0   0
14063.49315 0   0   0
14173.02566 0   0   0
14282.55818 0   0   0
14392.09069 0   0   0
14501.6232  0   0   0
14611.15571 0   0   0
14720.68823 0   0   0
14830.22074 0   0   0
14939.75325 0.000177    0   0
15049.28576 0   0   0
15158.81828 0   0   0
15268.35079 0   0   0
15377.8833  0   0   0
15487.41581 0.00017 0   0
15596.94833 0   0   0
15706.48084 0   0   0
15816.01335 0   0   4.80E-05
15925.54586 0   0   0
16035.07838 0   0   0
16144.61089 0   0   0
16254.1434  0.000216    0   0
16363.67591 0   0   0
16473.20843 0   0   0
16582.74094 0   0   0
16692.27345 0.000239    0   0
16801.80596 0   0   0
16911.33848 0   0   0
17020.87099 0   0   0
17130.4035  0   0   0
17239.93601 0   0   0
17349.46853 0   0   0
17459.00104 0   0   0
17568.53355 0   0   6.10E-05
17678.06606 0   0   4.50E-05
17787.59858 0   0   0
17897.13109 0   0   0
18006.6636  0   0   0
18116.19611 0.000125    0   0
18225.72863 0   0   0
18335.26114 0   0   0
18444.79365 0   0   0
18554.32617 0   0   0
18663.85868 0   0   0
18773.39119 0   0   0
18882.9237  0   0   0
18992.45622 0   0   0
19101.98873 0   0   0
19211.52124 0   0   0
19321.05375 0   0   0
19430.58627 0   0   0
19540.11878 0   0   0
19649.65129 0   0   0
19759.1838  0   0   0
19868.71632 0   0   0
19978.24883 0   0   0
20087.78134 0   0   0
20197.31385 0   0   0
20306.84637 0   0   0
20416.37888 0   0   0
20525.91139 0   0   0
20635.4439  0   0   0
20744.97642 0   0   0
20854.50893 5.20E-05    0   0
20964.04144 0   0   0
21073.57395 0   0   0
21183.10647 0   0   0

如您所见,x值并不完全相同。鉴于此,data1-data2不会产生我想要的结果。我可以使用插值法将y值推定为相同的x值。例如,我可以使用以下代码进行插值:

Interpolation = interp1d(data1_y, data1_x, assume_sorted = False)

我仍然没有想出如何使用插值法将相同x处的两个数据的y值相减...有什么想法吗?

编辑1):

我的意思是data1-data2是这样。

data1=pd.read_csv('Data1.csv')
data2=pd.read_csv('Data2.csv')

data1.iloc[:,1:]-data2.iloc[:,1:] #this line is what I meant by data1-data2

很抱歉,我的描述不充分。没关系,

data1.iloc[:,1:]-data2.iloc[:,1:]

将不起作用,因为它将从相同的索引号中减去这些值。但是,对于每个数据集,相同索引号中的y值具有不同的对应x值。

0 个答案:

没有答案