用R data.table行的排列填充“计数矩阵”

时间:2018-08-12 18:06:27

标签: r matrix count data.table

(下面,我可以使用R data.frame或R data.table。都可以。)

我有以下data.table:

library(data.table)

dt = data.table(V1=c("dog", "dog", "cat", "cat", "cat", "bird","bird","bird","bird"), 
                    V2=rep(42, 9), V3=c(1, 2, 4, 5, 7, 1, 2, 5, 8)) 

> print(dt)
     V1 V2 V3
1:  dog 42  1
2:  dog 42  2
3:  cat 42  4
4:  cat 42  5
5:  cat 42  7
6: bird 42  1
7: bird 42  2
8: bird 42  5
9: bird 42  8

V3包含1到8的整数。我的目标是给定列V1

因此,dogcatbird的组合对为:

dog: (1, 2)
cat: (4, 5), (4, 7), (5, 7)
bird: (1, 2), (1, 5), (1, 8), (2, 5), (2, 8), (5, 8)

对于每对,我将+1添加到零矩阵中的相应条目。对于此矩阵,(n, m) = (m, n)。给定dt的矩阵将是:

   1 2 3 4 5 6 7 8
1: 0 2 0 0 1 0 0 1
2: 2 0 0 0 1 0 0 1
3: 0 0 0 0 0 0 0 0
4: 0 0 0 0 1 0 1 0
5: 1 1 0 1 0 0 1 1
6: 0 0 0 0 0 0 0 0
7: 0 0 0 1 1 0 0 0
8: 1 1 0 0 1 0 0 0

请注意,(1,2)=(2,1)的计数为2,来自dog组合和bird组合。

(1)在给定另一列的唯一值的情况下,是否有一种方法可以计算R data.table / data.frame列中的值组合?

输出带有向量“成对”的R列表(例如,

list(c(1, 2), c(2, 1), c(4, 5), c(4, 7), c(5, 7), c(5, 4), c(7, 4), c(7, 5),
    c(1, 2), c(1, 5), c(1, 8), c(2, 5), c(2, 8), c(5, 8), c(2, 1), c(5, 1),
    c(8, 1), c(5, 2), c(8, 2), c(8, 5))

但是,我不确定如何使用它来填充矩阵...

(2)给定data.table / data.frame输入,什么才是上面写出矩阵最有效的数据结构?

2 个答案:

答案 0 :(得分:6)

这是一个似乎有效的data.table解决方案。基本上,我们进行自我连接以创建组合然后计数。然后,类似于使用@numpy进行@coldspeed一样,我们将仅通过具有计数的位置更新零矩阵。

# a self join
tmp <- dt[dt, 
             .(V1, id = x.V3, id2 = V3), 
             on = .(V1, V3 < V3), 
             nomatch = 0L,
             allow.cartesian = TRUE
          ][, .N, by = .(id, id2)]

## Create a zero matrix and update by locations
m <- array(0L, rep(max(dt$V3), 2L))
m[cbind(tmp$id, tmp$id2)] <- tmp$N
m + t(m)

#      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,]    0    2    0    0    1    0    0    1
# [2,]    2    0    0    0    1    0    0    1
# [3,]    0    0    0    0    0    0    0    0
# [4,]    0    0    0    0    1    0    1    0
# [5,]    1    1    0    1    0    0    1    1
# [6,]    0    0    0    0    0    0    0    0
# [7,]    0    0    0    1    1    0    0    0
# [8,]    1    1    0    0    1    0    0    0

或者,我们可以使用tmp创建data.table::CJ,但是(可能是由于@Frank提供了技巧)可能会降低内存效率,因为它将首先创建所有可能的组合,例如

tmp <- dt[, CJ(V3, V3)[V1 < V2], by = .(g = V1)][, .N, by = .(V1, V2)]

## Then, as previously
m <- array(0L, rep(max(dt$V3), 2L))
m[cbind(tmp$V1, tmp$V2)] <- tmp$N
m + t(m)

#      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,]    0    2    0    0    1    0    0    1
# [2,]    2    0    0    0    1    0    0    1
# [3,]    0    0    0    0    0    0    0    0
# [4,]    0    0    0    0    1    0    1    0
# [5,]    1    1    0    1    0    0    1    1
# [6,]    0    0    0    0    0    0    0    0
# [7,]    0    0    0    1    1    0    0    0
# [8,]    1    1    0    0    1    0    0    0

答案 1 :(得分:2)

不确定这是否是最优雅的方法,但是它可以起作用:

myfun <- function(x, matsize=8) {
    # get all (i,j) pairs but in an unfortunate text format
    pairs_all <- outer(x, x, paste)

    # "drop" all self-pairs like (1,1)
    diag(pairs_all) <- "0 0"

    # convert these text-pairs into numeric pairs and store in matrix
    ij <- do.call(rbind, lapply(strsplit(pairs_all, " "), as.numeric))

    # create "empty" matrix of zeros
    mat <- matrix(0, nrow=matsize, ncol=matsize)

    # replace each spot of empty matrix with a 1 if that pair exists
    mat[ij] <- 1

    # return 0/1 matrix
    return(mat)
}

# split your data by group
# lapply the custom function to each group
# add each group's 0/1 matrix together for final result
Reduce('+', lapply(split(dt$V3, dt$V1), myfun))

如果有人可以更直接地实现myfun的前3行(非注释行),我会很乐意将它们合并。