TypeError:__init __()缺少2个必需的位置参数:“消息”和“代码”

时间:2018-08-12 18:05:12

标签: python tensorflow tensor

我尝试在本地计算机上运行与以下代码完全相同的代码(在具有注意的神经机器翻译上): https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb

训练模型并尝试保存检查点时出现以下错误:

Epoch 1 Batch 0 Loss 0.3238
---------------------------------------------------------------------------
_FallbackException                        Traceback (most recent call last)
C:\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_io_ops.py in save_v2(prefix, tensor_names, shape_and_slices, tensors, name)
   1809         _ctx._post_execution_callbacks, prefix, tensor_names,
-> 1810         shape_and_slices, tensors)
   1811       return _result

_FallbackException: This function does not handle the case of the path where all inputs are not already EagerTensors.

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
<ipython-input-28-bb3738bfb3d8> in <module>()
     43     # saving (checkpoint) the model every 2 epochs
     44     if epoch % 2 == 0:
---> 45         checkpoint.save(file_prefix = checkpoint_prefix)
     46 
     47     print('Epoch {} Loss {:.4f}'.format(epoch + 1,

C:\Anaconda3\lib\site-packages\tensorflow\python\training\checkpointable\util.py in save(self, file_prefix, session)
   1485         file_prefix=file_prefix,
   1486         checkpoint_number=self.save_counter,
-> 1487         session=session)
   1488 
   1489   def restore(self, save_path):

C:\Anaconda3\lib\site-packages\tensorflow\python\training\checkpointable\util.py in save(self, file_prefix, checkpoint_number, session)
   1184           save_path=file_prefix,
   1185           write_meta_graph=False,
-> 1186           global_step=checkpoint_number)
   1187     return save_path
   1188 

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in save(self, sess, save_path, global_step, latest_filename, meta_graph_suffix, write_meta_graph, write_state, strip_default_attrs)
   1613         if context.executing_eagerly():
   1614           self._build_eager(
-> 1615               checkpoint_file, build_save=True, build_restore=False)
   1616           model_checkpoint_path = self.saver_def.save_tensor_name
   1617         else:

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in _build_eager(self, checkpoint_path, build_save, build_restore)
   1295   def _build_eager(self, checkpoint_path, build_save, build_restore):
   1296     self._build(
-> 1297         checkpoint_path, build_save=build_save, build_restore=build_restore)
   1298 
   1299   def _build(self, checkpoint_path, build_save, build_restore):

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in _build(self, checkpoint_path, build_save, build_restore)
   1328           restore_sequentially=self._restore_sequentially,
   1329           filename=checkpoint_path,
-> 1330           build_save=build_save, build_restore=build_restore)
   1331     elif self.saver_def and self._name:
   1332       # Since self._name is used as a name_scope by builder(), we are

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in _build_internal(self, names_to_saveables, reshape, sharded, max_to_keep, keep_checkpoint_every_n_hours, name, restore_sequentially, filename, build_save, build_restore)
    773       else:
    774         if build_save:
--> 775           save_tensor = self._AddSaveOps(filename_tensor, saveables)
    776         if build_restore:
    777           restore_op = self._AddRestoreOps(filename_tensor, saveables,

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in _AddSaveOps(self, filename_tensor, saveables)
    273       A tensor with the filename used to save.
    274     """
--> 275     save = self.save_op(filename_tensor, saveables)
    276     return control_flow_ops.with_dependencies([save], filename_tensor)
    277 

C:\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py in save_op(self, filename_tensor, saveables)
    191       # of a V2 checkpoint: e.g. "/fs/train/ckpt-<step>/tmp/worker<i>-<step>".
    192       return io_ops.save_v2(filename_tensor, tensor_names, tensor_slices,
--> 193                             tensors)
    194     else:
    195       raise RuntimeError("Unexpected write_version: " + self._write_version)

C:\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_io_ops.py in save_v2(prefix, tensor_names, shape_and_slices, tensors, name)
   1813       return save_v2_eager_fallback(
   1814           prefix, tensor_names, shape_and_slices, tensors, name=name,
-> 1815           ctx=_ctx)
   1816     except _core._NotOkStatusException as e:
   1817       if name is not None:

C:\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_io_ops.py in save_v2_eager_fallback(prefix, tensor_names, shape_and_slices, tensors, name, ctx)
   1834   _attrs = ("dtypes", _attr_dtypes)
   1835   _result = _execute.execute(b"SaveV2", 0, inputs=_inputs_flat, attrs=_attrs,
-> 1836                              ctx=_ctx, name=name)
   1837   _result = None
   1838   return _result

C:\Anaconda3\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     58     tensors = pywrap_tensorflow.TFE_Py_Execute(ctx._handle, device_name,
     59                                                op_name, inputs, attrs,
---> 60                                                num_outputs)
     61   except core._NotOkStatusException as e:
     62     if name is not None:

TypeError: __init__() missing 2 required positional arguments: 'message' and 'code'

0 个答案:

没有答案