我将两个代码段合并为一个,以得到CartPole示例的清晰示例。但是我确实在某个地方搞砸了(tensorflow和rl的新手)。也许有人可以帮我解决这个问题。
披露:这是来自the datascience stackexchange的一个交叉帖子。由于我无法获得答案,因此我敢在这里寻求帮助
我的演员批评算法无法学习,这是代码(谢谢):
# https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/8_Actor_Critic_Advantage/AC_CartPole.py
import gym
import itertools
import matplotlib
import numpy as np
import sys
import tensorflow as tf
import collections
env = gym.make('CartPole-v0')
# https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
# https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/8_Actor_Critic_Advantage/AC_CartPole.py
env.seed(1)
np.random.seed(1)
tf.set_random_seed(1) # reproducible
number_features = env.observation_space.shape[0]
number_actions = env.action_space.n
gamma = 0.9 # reward discount in TD error
learning_rate = 0.01
# Superparameters
DISPLAY_REWARD_THRESHOLD = 200 # renders environment if total episode reward is greater then this threshold
RENDER = False # rendering wastes time
env = gym.make('CartPole-v0')
env.seed(1) # reproducible
env = env.unwrapped
N_F = env.observation_space.shape[0]
N_A = env.action_space.n
total_episodes = 5000 # Set total number of episodes to train agent on.
max_ep = 999
class Actor(object):
def __init__(self, sess, n_features, n_actions, lr):
self.sess = sess
self.s = tf.placeholder(tf.float32, [1, n_features], "state")
self.a = tf.placeholder(tf.int32, None, "act")
self.td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error
with tf.variable_scope('Actor'):
l1 = tf.layers.dense(
inputs=self.s,
units=20, # number of hidden units
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
)
self.acts_prob = tf.layers.dense(
inputs=l1,
units=n_actions, # output units
activation=tf.nn.softmax, # get action probabilities
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='acts_prob'
)
with tf.variable_scope('exp_v'):
log_prob = tf.log(self.acts_prob[0, self.a])
self.exp_v = tf.reduce_mean(log_prob * self.td_error) # advantage (TD_error) guided loss
with tf.variable_scope('train'):
#self.picked_action_prob = tf.gather(self.action_probs, self.action)
# Loss and train op
#self.loss = -tf.log(self.picked_action_prob) * self.target
self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v) # minimize(-exp_v) = maximize(exp_v)
def learn(self, s, a, td):
s = s[np.newaxis, :]
feed_dict = {self.s: s, self.a: a, self.td_error: td}
_, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict)
return exp_v
def choose_action(self, s):
s = s[np.newaxis, :]
probs = self.sess.run(self.acts_prob, {self.s: s}) # get probabilities for all actions
# numpy.ravel() returns contiguous flattened 1d array
return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel()) # return a int
class Critic(object):
def __init__(self, sess, n_features, lr):
self.sess = sess
self.state = tf.placeholder(tf.float32, [1, n_features], "state")
self.target = tf.placeholder(tf.float32, [1, 1], "target")
with tf.variable_scope('Critic'):
l1 = tf.layers.dense(
inputs=self.state,
units=20, # number of hidden units
activation=tf.nn.relu, # None
# have to be linear to make sure the convergence of actor.
# But linear approximator seems hardly learns the correct Q.
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
)
self.v = tf.layers.dense(
inputs=l1,
units=1, # output units
activation=None,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='V'
)
with tf.variable_scope('squared_TD_error'):
self.loss = tf.squared_difference(self.v, self.target)
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)
def predict(self, state):
state = state[np.newaxis, :]
return self.sess.run(self.v, {self.state: state})
def learn(self, state, target):
state = state[np.newaxis, :]
feed_dict = {self.state: state, self.target: target}
_, loss = sess.run([self.train_op, self.loss], feed_dict)
return loss
def actor_critic(env, actor, critic, num_episodes, discount_factor=1.0):
"""
Actor Critic Algorithm. Optimizes the policy
function approximator using policy gradient.
Args:
env: OpenAI environment.
actor: Policy Function to be optimized
critic: Value function approximator, used as a critic
num_episodes: Number of episodes to run for
discount_factor: Time-discount factor
Returns:
An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
"""
# Keeps track of useful statistics
EpisodeStats = collections.namedtuple("Stats", ["episode_lengths", "episode_rewards"])
stats = EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes))
Transition = collections.namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])
for i_episode in range(num_episodes):
# Reset the environment and pick the first action
state = env.reset()
episode = []
track_r = []
# One step in the environment
for t in range(max_ep):
# Take a step
action = actor.choose_action(state)
next_state, reward, done, _ = env.step(action)
track_r.append(reward)
# Keep track of the transition
episode.append(Transition(
state=state, action=action, reward=reward, next_state=next_state, done=done))
# Update statistics
stats.episode_rewards[i_episode] += reward
stats.episode_lengths[i_episode] = t
# Calculate TD Target
value_next = critic.predict(next_state)
td_target = reward + discount_factor * value_next
td_error = td_target - critic.predict(state)
# Update the value estimator
critic.learn(state, td_target)
# Update the policy estimator
# using the td error as our advantage estimate
actor.learn(state, action, td_error)
# Print out which step we're on, useful for debugging.
#print("\rStep {} @ Episode {}/{} ({})".format(
# t, i_episode + 1, num_episodes, stats.episode_rewards[i_episode - 1]))
#env.render()
if done:
ep_rs_sum = sum(track_r)
if 'running_reward' not in globals():
running_reward = ep_rs_sum
else:
running_reward = running_reward * 0.95 + ep_rs_sum * 0.05
if running_reward > DISPLAY_REWARD_THRESHOLD:
RENDER = True # rendering
print("episode:", i_episode, " reward:", int(running_reward))
break
state = next_state
return stats
with tf.Session() as sess:
tf.reset_default_graph()
actor = Actor(sess, number_features, number_actions, learning_rate)
critic = Critic(sess, number_features, learning_rate)
init = tf.global_variables_initializer()
sess.run(init)
# Note, due to randomness in the policy the number of episodes you need to learn a good
# policy may vary. ~300 seemed to work well for me.
stats = actor_critic(env, actor, critic, total_episodes)