假设我有一个文档,如下所示:
import spacy
nlp = spacy.load('en')
doc = nlp('My name is John Smith')
[t for t in doc]
> [My, name, is, John, Smith]
Spacy足够聪明,可以认识到“ John Smith”是一个多令牌命名实体:
[e for e in doc.ents]
> [John Smith]
如何使其将命名实体大块化为离散的令牌,如下所示:
> [My, name, is, John Smith]
答案 0 :(得分:1)
有关NER的Spacy文档,您可以使用token.ent_iob_
和token.ent_type_
属性访问令牌实体注释。
https://spacy.io/usage/linguistic-features#accessing
示例:
import spacy
nlp = spacy.load('en')
doc = nlp('My name is John Smith')
ne = []
merged = []
for t in doc:
# "O" -> current token is not part of the NE
if t.ent_iob_ == "O":
if len(ne) > 0:
merged.append(" ".join(ne))
ne = []
merged.append(t.text)
else:
ne.append(t.text)
if len(ne) > 0:
merged.append(" ".join(ne))
print(merged)
这将打印:
['My', 'name', 'is', 'John Smith']