我正在尝试使用tm的DocumentTermMatrix函数来生成一个具有二元组而不是单字组的矩阵。我尝试在函数中使用概述here和here的示例(以下是三个示例):
make_dtm = function(main_df, stem=F){
tokenize_ngrams = function(x, n=2) return(rownames(as.data.frame(unclass(textcnt(x,method="string",n=n)))))
decisions = Corpus(VectorSource(main_df$CaseTranscriptText))
decisions.dtm = DocumentTermMatrix(decisions, control = list(tokenize=tokenize_ngrams,
stopwords=T,
tolower=T,
removeNumbers=T,
removePunctuation=T,
stemming = stem))
return(decisions.dtm)
}
make_dtm = function(main_df, stem=F){
BigramTokenizer = function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
decisions = Corpus(VectorSource(main_df$CaseTranscriptText))
decisions.dtm = DocumentTermMatrix(decisions, control = list(tokenize=BigramTokenizer,
stopwords=T,
tolower=T,
removeNumbers=T,
removePunctuation=T,
stemming = stem))
return(decisions.dtm)
}
make_dtm = function(main_df, stem=F){
BigramTokenizer = function(x) unlist(lapply(ngrams(words(x), 2), paste, collapse = " "), use.names = FALSE)
decisions = Corpus(VectorSource(main_df$CaseTranscriptText))
decisions.dtm = DocumentTermMatrix(decisions, control = list(tokenize=BigramTokenizer,
stopwords=T,
tolower=T,
removeNumbers=T,
removePunctuation=T,
stemming = stem))
return(decisions.dtm)
}
但是,不幸的是,函数的这三个版本中的每一个都会产生完全相同的输出:具有unigram而不是bigrams的DTM(为简单起见,包括了图像):
为方便起见,以下是我正在使用的数据的子集:
x = data.frame("CaseName" = c("Attorney General's Reference (No.23 of 2011)", "Attorney General's Reference (No.31 of 2016)", "Joseph Hill & Co Solicitors, Re"),
"CaseID"= c("[2011]EWCACrim1496", "[2016]EWCACrim1386", "[2013]EWCACrim775"),
"CaseTranscriptText" = c("sanchez 2011 02187 6 appeal criminal division 8 2011 2011 ewca crim 14962011 wl 844075 wales wednesday 8 2011 attorney general reference 23 2011 36 criminal act 1988 representation qc general qc appeared behalf attorney general",
"attorney general reference 31 2016 201601021 2 appeal criminal division 20 2016 2016 ewca crim 13862016 wl 05335394 dbe honour qc sitting cacd wednesday 20 th 2016 reference attorney general 36 criminal act 1988 representation",
"matter wasted costs against company solicitors 201205544 5 appeal criminal division 21 2013 2013 ewca crim 7752013 wl 2110641 date 21 05 2013 appeal honour pawlak 20111354 hearing date 13 th 2013 representation toole respondent qc appellants"))
答案 0 :(得分:1)
您的代码存在一些问题。我只关注您创建的最后一个函数,因为我不使用tau或Rweka软件包。
1要使用令牌生成器,您需要指定tokenizer = ...
,而不是tokenize = ...
2而不是Corpus
,您需要VCorpus
。
3在您的函数make_dtm
中进行了调整之后,我对结果不满意。并非控制选项中指定的所有内容都得到正确处理。我创建了第二个函数make_dtm_adjusted
,以便您可以看到两个函数之间的区别。
# OP's function adjusted to make it work
make_dtm = function(main_df, stem=F){
BigramTokenizer = function(x) unlist(lapply(ngrams(words(x), 2), paste, collapse = " "), use.names = FALSE)
decisions = VCorpus(VectorSource(main_df$CaseTranscriptText))
decisions.dtm = DocumentTermMatrix(decisions, control = list(tokenizer=BigramTokenizer,
stopwords=T,
tolower=T,
removeNumbers=T,
removePunctuation=T,
stemming = stem))
return(decisions.dtm)
}
# improved function
make_dtm_adjusted = function(main_df, stem=F){
BigramTokenizer = function(x) unlist(lapply(ngrams(words(x), 2), paste, collapse = " "), use.names = FALSE)
decisions = VCorpus(VectorSource(main_df$CaseTranscriptText))
decisions <- tm_map(decisions, content_transformer(tolower))
decisions <- tm_map(decisions, removeNumbers)
decisions <- tm_map(decisions, removePunctuation)
# specifying your own stopword list is better as you can use stopwords("smart")
# or your own list
decisions <- tm_map(decisions, removeWords, stopwords("english"))
decisions <- tm_map(decisions, stripWhitespace)
decisions.dtm = DocumentTermMatrix(decisions, control = list(stemming = stem,
tokenizer=BigramTokenizer))
return(decisions.dtm)
}