我试图计算包含单个观测值的小标题列表中出现的频率,这些分隔符之间用“;”分隔。在purrr::map()
中使用purrr::map()
时遇到错误。我怀疑我缺少一些简单的东西,因此不胜感激。
以输入不同客户的水果为例,其中同时购买的水果之间用“;”分隔。
# Fruit purchases across days with different number of customers.
day_1 <- as_data_frame(setNames(list(c("oranges;peaches;apples", "pears;apples", "bananas", "oranges;apples", "apples")), "fruits"))
day_2 <- as_data_frame(setNames(list(c("oranges;apples", "peaches","apples;bananas;", "pears", "apples;peaches", "oranges")), "fruits"))
day_3 <- as_data_frame(setNames(list(c("peaches;pears","apples","bananas")), "fruits"))
# Create list of fruit purchases.
fruit_list <- list(day_1, day_2, day_3)
这将返回三个小标题的列表,这是我的数据的一般格式。我可以使用dplyr
/ purrr
来计算每天每种水果的总观察次数:
fruit_list %>%
map(function(x) strsplit(x$fruits, ";")) %>%
map(unlist) %>%
map(table)
但是,当我尝试在map()
中使用map()
来隔离和汇总所有小菜一碟中的单个水果时,我遇到了错误
“错误:
.x
不是向量(关闭)”
fruit_list %>%
map(mutate(fruit_count = map(function(x) strsplit(x$fruits, ";"), length))) %>%
filter(fruit_count==1) %>%
count(solo_fruits = fruits)
我可以对单个小标题/ df执行此功能,但不能对整个小标题列表执行此功能。我是否缺少使用map()
函数的东西或更明显的东西?谢谢!
# A tibble: 2 x 2
solo_fruits n
<chr> <int>
1 apples 1
2 bananas 1
我如何得出单个样本的上述答案:
day_1_df <- as.data.frame(fruit_list[[1]])
day_1_df %>%
mutate(fruit_count = map(strsplit(day_1_df$fruits, ";"), length)) %>%
filter(fruit_count==1) %>%
count(solo_fruits = fruits)
答案 0 :(得分:0)
并非完全符合您的要求,但这可能会以不同的方式解决您的问题:
library(tidyverse)
day_1 <- as_data_frame(setNames(list(c("oranges;peaches;apples", "pears;apples", "bananas", "oranges;apples", "apples")), "fruits"))
day_2 <- as_data_frame(setNames(list(c("oranges;apples", "peaches","apples;bananas;", "pears", "apples;peaches", "oranges")), "fruits"))
day_3 <- as_data_frame(setNames(list(c("peaches;pears","apples","bananas")), "fruits"))
df <- tibble(day = 1:3, fruits = c(day_1, day_2, day_3)) %>%
unnest() %>%
mutate(fruits = strsplit(fruits, ";"), customer = row_number()) %>%
unnest()
df %>%
group_by(customer) %>%
filter(n() == 1) %>%
group_by(customer, day, fruits) %>%
summarise(n = n())
# # A tibble: 7 x 4
# # Groups: customer, day [?]
# customer day fruits n
# <int> <int> <chr> <int>
# 1 3 1 bananas 1
# 2 5 1 apples 1
# 3 7 2 peaches 1
# 4 9 2 pears 1
# 5 11 2 oranges 1
# 6 13 3 apples 1
# 7 14 3 bananas 1
编辑:误解后更改
答案 1 :(得分:0)
您可以使用str_detect
来捕获没有;
的行。或者您可以使用str_count来计数;
然后添加1。
fruit_list%>%
map(~filter(.x,!str_detect(fruits,";"))%>%
mutate(solo_fruits = fruits,count = 1,fruits=NULL))
[[1]]
# A tibble: 2 x 2
solo_fruits count
<chr> <dbl>
1 bananas 1
2 apples 1
[[2]]
# A tibble: 3 x 2
solo_fruits count
<chr> <dbl>
1 peaches 1
2 pears 1
3 oranges 1
[[3]]
# A tibble: 2 x 2
solo_fruits count
<chr> <dbl>
1 apples 1
2 bananas 1
使用str_count
的意思是:它将为您提供每行水果的总数。而不是拆分然后使用长度
fruit_list%>%
map(~mutate(.x,count = str_count(fruits,";") + 1))