我正在用嘴唇格式的数据运行测试,其中列“ a”是我的top_lip,列“ b”是我的bottom_lip,它们都是12个元组的数组(我已经对此进行了验证)。
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# Fit only to the training data
scaler.fit(X_train)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-59-e7a81294879e> in <module>()
2 scaler = StandardScaler()
3 # Fit only to the training data
----> 4 scaler.fit(X_train)
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in fit(self, X, y)
588 # Reset internal state before fitting
589 self._reset()
--> 590 return self.partial_fit(X, y)
591
592 def partial_fit(self, X, y=None):
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in partial_fit(self, X, y)
610 """
611 X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
--> 612 warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES)
613
614 # Even in the case of `with_mean=False`, we update the mean anyway
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
431 force_all_finite)
432 else:
--> 433 array = np.array(array, dtype=dtype, order=order, copy=copy)
434
435 if ensure_2d:
ValueError: setting an array element with a sequence.