当我使用一个模型(pb文件)进行推理时,tensorflow会打印与FusedBatchNorm相关的多行代码,如下所示:
Optimizing fused batch norm node name: "FirstStageFeatureExtractor/InceptionV2/InceptionV2/Conv2d_2b_1x1/BatchNorm/FusedBatchNorm"
op: "FusedBatchNorm"
input: "FirstStageFeatureExtractor/InceptionV2/InceptionV2/Conv2d_2b_1x1/Conv2D"
input: "FirstStageFeatureExtractor/InceptionV2/Conv2d_2b_1x1/BatchNorm/gamma"
input: "FirstStageFeatureExtractor/InceptionV2/Conv2d_2b_1x1/BatchNorm/beta"
input: "FirstStageFeatureExtractor/InceptionV2/Conv2d_2b_1x1/BatchNorm/moving_mean"
input: "FirstStageFeatureExtractor/InceptionV2/Conv2d_2b_1x1/BatchNorm/moving_variance"
device: "/job:localhost/replica:0/task:0/device:GPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
attr {
key: "epsilon"
value {
f: 0.001
}
}
attr {
key: "is_training"
value {
b: false
}
}
推断结果还可以,但是有点慢。我不知道FusedBatchNorm是什么,并且这个家伙是否会降低推理速度。
我在带有Nvidia Tesla P4(8vCPU,32G内存,GPU内存为7G)的Centos 7.2服务器上运行该模型,并且通常只需要12秒即可处理一张图像(我认为这确实很慢:-()。< / p>
关于训练,我使用tensorflow对象检测并模型faster_rcnn_resnet101,这是配置文件:
model {
faster_rcnn {
num_classes: 3
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 670
max_dimension: 1013
}
}
feature_extractor {
type: "faster_rcnn_resnet101"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 100
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.3
iou_threshold: 0.6
max_detections_per_class: 30
max_total_detections: 30
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.0003
decay_steps: 2000
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "d:/od/tool/faster_rcnn3/model.ckpt"
from_detection_checkpoint: true
}
train_input_reader {
label_map_path: "d:/od/project/train_allinone/file/labelmap.pbtxt"
tf_record_input_reader {
input_path: "d:/od/project/train_allinone/file/tf.record"
}
}
答案 0 :(得分:1)
关于详细的调试输出:看来这是一个最近在主干中修复的错误:https://github.com/tensorflow/tensorflow/pull/19870
使用此修复程序,仅当VLOG级别设置为2或更高时,才应打印输出。
答案 1 :(得分:0)
最后我得到了原因:
我用于训练的桌面上的Tensorflow是1.8,但推理服务器上是1.9。
对不起,噪音。