我对这个功能还算半途而废。但是,在格式化包含输出的工作表中的数据时,我需要一些帮助。
我当前的代码...
response = {"sic2":[{"confidence":1.0,"label":"73"}],"sic4":[{"confidence":0.5,"label":"7310"}],"sic8":[{"confidence":0.5,"label":"73101000"},{"confidence":0.25,"label":"73102000"},{"confidence":0.25,"label":"73109999"}]}
# Create a Pandas dataframe from the data.
df = pd.DataFrame.from_dict(json.loads(response), orient='index')
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas_simple.xlsx', engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name='Sheet1')
# Close the Pandas Excel writer and output the Excel file.
writer.save()
我想要的是这样的东西...
我想首先我需要提取和整理标题。 这还包括手动为默认情况下不能包含标题的列分配标题,例如SIC列。
在那之后,我可以将数据及其各自的标题提供给列。
答案 0 :(得分:3)
您可以遍历json对象的键并从每个键创建一个数据框,然后使用pd.concat
将它们组合在一起:
import json
import pandas as pd
response = '{"sic2":[{"confidence":1.0,"label":"73"}],"sic4":[{"confidence":0.5,"label":"7310"}],"sic8":[{"confidence":0.5,"label":"73101000"},{"confidence":0.25,"label":"73102000"},{"confidence":0.25,"label":"73109999"}]}'
json_data = json.loads(response)
all_frames = []
for k, v in json_data.items():
df = pd.DataFrame(v)
df['SIC Category'] = k
all_frames.append(df)
final_data = pd.concat(all_frames).set_index('SIC Category')
print(final_data)
此打印:
confidence label
SIC Category
sic2 1.00 73
sic4 0.50 7310
sic8 0.50 73101000
sic8 0.25 73102000
sic8 0.25 73109999
您可以像以前一样通过final_data.to_excel(writer, sheet_name='Sheet1')