我的问题对我来说是如此基本,以至于我自己没有解决这个问题感到有些尴尬。尽管咨询了this,this和that,但我不知道如何在不使用for的情况下基于1D numpy数组中的值更改2D numpy数组中的某些值,循环。
一个预期结果的例子是:
import numpy as np
# sample data:
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = np.array([2, 0, 2])
c = np.array([[10, 20, 30], [40, 50, 60], [70, 80, 90]])
# for-loop solution:
for i in range(len(a)):
a[i][b[i]] = 0.9 * c[i][b[i]]
# desired result:
print(a)
# [[ 1 2 27]
# [36 5 6]
# [ 7 8 81]]
编辑1
实现拉斐尔答案的修改后,我现在获得了所需的结果,而没有for循环。但是,令我惊讶的是,索引解决方案比for循环慢。
import numpy as np
import time
# set seed for reproducibility:
np.random.seed(1)
x = np.random.randint(10, size=(10, 10))
y = np.random.randint(10, size=10)
z = np.random.randint(10, size=(10, 10))
# for-loop solution:
start1 = time.clock()
for i in range(len(x)):
x[i][y[i]] = 2 * z[i][y[i]]
end1 = time.clock()
print("time loop: " + str(end1 - start1))
# time loop: 0.00045699999999726515
print("result for-loop:")
print(x)
# result for-loop:
# [[ 5 8 9 5 0 0 1 7 6 4]
# [12 4 5 2 4 2 4 7 7 9]
# [ 1 7 2 6 9 9 7 6 9 1]
# [ 2 1 8 8 3 9 8 7 3 6]
# [ 5 1 9 3 4 8 1 16 0 3]
# [ 9 14 0 4 9 2 7 7 9 8]
# [ 6 9 3 7 7 4 5 0 3 6]
# [ 8 0 2 7 7 9 7 3 0 16]
# [ 7 7 1 1 3 0 8 6 16 5]
# [ 6 2 5 7 14 4 4 7 7 4]]
# set seed for reproducibility:
np.random.seed(1)
x = np.random.randint(10, size=(10, 10))
y = np.random.randint(10, size=10)
z = np.random.randint(10, size=(10, 10))
# indexing solution:
start2 = time.clock()
r = x.shape[0]
x[range(r), y] = z[range(r), y] * 2
end2 = time.clock()
print("time indexing: " + str(end2 - start2))
# time indexing: 0.0005479999999948859
print("result indexing:")
print(x)
# result indexing:
# [[ 5 8 9 5 0 0 1 7 6 4]
# [12 4 5 2 4 2 4 7 7 9]
# [ 1 7 2 6 9 9 7 6 9 1]
# [ 2 1 8 8 3 9 8 7 3 6]
# [ 5 1 9 3 4 8 1 16 0 3]
# [ 9 14 0 4 9 2 7 7 9 8]
# [ 6 9 3 7 7 4 5 0 3 6]
# [ 8 0 2 7 7 9 7 3 0 16]
# [ 7 7 1 1 3 0 8 6 16 5]
# [ 6 2 5 7 14 4 4 7 7 4]]
是什么原因造成的?而且,如何实现提速?
答案 0 :(得分:2)
IIUC
r = np.arange(a.shape[0]) # same as range(len(a)) here, but faster.
a[r, b] = c[r, b] * 0.9
array([[ 1, 2, 27],
[36, 5, 6],
[ 7, 8, 81]])
答案 1 :(得分:0)
似乎实际上是掩码数组很慢。参见here。
这是用户在另一个答案中说的话。
请记住,MaskedArrays比真正的更方便 解。如果您需要对数组执行密集计算 缺少/未定义值的数组,在大多数情况下,您的状况会更好 自己处理掩码和数据。直到更好 NumPy代码中包含缺失/未定义值的实现 (应该会很快发生),您将无法使用MaskedArrays。 是的,它们非常慢,因为它们是用纯Python编码的, 当然不能像依靠某些C代码那样高效
希望它可以解决您的疑问。