从头开始训练对象

时间:2018-08-07 15:21:25

标签: pytorch skorch

我正在尝试使用skorch类在分类器上执行GridSearch。 我尝试使用香草NeuralNetClassifier对象运行,但是我还没有找到一种仅将可训练的权重传递给Adam优化器的方法(我使用的是预先训练的嵌入,并且希望将其保持冻结状态)。如果初始化了模块,然后使用optimizer__params选项传递了这些权重是可行的,但是模块需要一个未初始化的模型。有没有解决的办法?

net = NeuralNetClassifier(module=RNN, module__vocab_size=vocab_size, module__hidden_size=hidden_size,
                          module__embedding_dim=embedding_dim, module__pad_id=pad_id,
                          module__dataset=ClaimsDataset, lr=lr, criterion=nn.CrossEntropyLoss,
                          optimizer=torch.optim.Adam, optimizer__weight_decay=35e-3, device='cuda',
                          max_epochs=nb_epochs, warm_start=True)

上面的代码有效。但是,在batch_size设置为64的情况下,我必须在每个批次上为指定的时期数运行模型!这不是我要寻找的行为。如果有人可以建议一种更好的方法,我将不胜感激。

我的另一个问题是继承skorch.NeuralNet。我遇到了一个类似的问题:找出一种方法,仅将可训练的权重传递给Adam优化器。下面的代码是我到目前为止所获得的。

class Train(skorch.NeuralNet):
def __init__(self, module, lr, norm, *args, **kwargs):
    self.module = module
    self.lr = lr
    self.norm = norm
    self.params = [p for p in self.module.parameters(self) if p.requires_grad]
    super(Train, self).__init__(*args, **kwargs)

def initialize_optimizer(self):
    self.optimizer = torch.optim.Adam(params=self.params, lr=self.lr, weight_decay=35e-3, amsgrad=True)

def train_step(self, Xi, yi, **fit_params):
    self.module.train()

    self.optimizer.zero_grad()
    yi = variable(yi)

    output = self.module(Xi)

    loss = self.criterion(output, yi)
    loss.backward()

    nn.utils.clip_grad_norm_(self.params, max_norm=self.norm)
    self.optimizer.step()

def score(self, y_t, y_p):
    return accuracy_score(y_t, y_p)

初始化类会出现错误:

Traceback (most recent call last):
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1664, in <module>
    main()
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1658, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1068, in run
pydev_imports.execfile(file, globals, locals)  # execute the script
File "/snap/pycharm-community/74/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
    exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/l/Documents/Bsrc/cv.py", line 115, in <module>
    main()
File "/home/l/B/src/cv.py", line 86, in main
    trainer = Train(module=RNN, criterion=nn.CrossEntropyLoss, lr=lr, norm=max_norm)
File "/home/l/B/src/cv.py", line 22, in __init__
   self.params = [p for p in self.module.parameters(self) if p.requires_grad]
File "/home/l/B/src/cv.py", line 22, in <listcomp>
   self.params = [p for p in self.module.parameters(self) if p.requires_grad]
File "/home/l/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 739, in parameters
    for name, param in self.named_parameters():
AttributeError: 'Train' object has no attribute 'named_parameters' 

1 个答案:

答案 0 :(得分:0)

  

但是module需要一个未初始化的模型

那是不正确的,您也可以传递初始化的模型。模型参数的The documentation表示:

  

但是,也可以传递实例化的模块,例如一个PyTorch顺序实例。

问题在于,当传递初始化的模型时,您无法将任何module__参数传递给NeuralNet,因为这将需要重新初始化模块。但是,如果要对模块参数进行网格搜索,那当然是有问题的。

解决方案是覆盖initialize_model,并在创建新实例后加载并冻结参数(通过将参数的requires_grad属性设置为False):

def _load_embedding_weights(self):
    return torch.randn(1, 100)

def initialize_module(self):
    kwargs = self._get_params_for('module')
    self.module_ = self.module(**kwargs)

    # load weights
    self.module_.embedding0.weight = self._load_embedding_weights()
    # freeze layer
    self.module_.embedding0.weight.requires_grad = False

    return self