如何从keras结果(np.array)中提取MFCC

时间:2018-08-06 22:48:08

标签: python python-3.x audio voice-recognition librosa

您好,我正在尝试使用python做口音分类器 我首先需要过滤和分离声音中的噪音,我在下面做了分离

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import librosa

import librosa.display

y, sr = librosa.load('/home/osboxes/Desktop/AccentReco1/audio-files/egyptiansong.mp3', duration=124)


# And compute the spectrogram magnitude and phase
S_full, phase = librosa.magphase(librosa.stft(y))

#Plot a 5-second slice of the spectrum
idx = slice(*librosa.time_to_frames([30, 35], sr=sr))
plt.figure(figsize=(12, 4))
librosa.display.specshow(librosa.amplitude_to_db(S_full[:, idx], ref=np.max),
                         y_axis='log', x_axis='time', sr=sr)
plt.colorbar()
plt.tight_layout()

# We'll compare frames using cosine similarity, and aggregate similar frames
# by taking their (per-frequency) median value.
#
# To avoid being biased by local continuity, we constrain similar frames to be
# separated by at least 2 seconds.
#
# This suppresses sparse/non-repetetitive deviations from the average spectrum,
# and works well to discard vocal elements.

S_filter = librosa.decompose.nn_filter(S_full,
                                       aggregate=np.median,
                                       metric='cosine',
                                       width=int(librosa.time_to_frames(2, sr=sr)))

# The output of the filter shouldn't be greater than the input
# if we assume signals are additive.  Taking the pointwise minimium
# with the input spectrum forces this.
S_filter = np.minimum(S_full, S_filter)

# We can also use a margin to reduce bleed between the vocals and instrumentation masks.
# Note: the margins need not be equal for foreground and background separation
margin_i, margin_v = 2, 10
power = 2

mask_i = librosa.util.softmask(S_filter,
                               margin_i * (S_full - S_filter),
                               power=power)

mask_v = librosa.util.softmask(S_full - S_filter,
                               margin_v * S_filter,
                               power=power)

# Once we have the masks, simply multiply them with the input spectrum
# to separate the components

S_foreground = mask_v * S_full
S_background = mask_i * S_full



print(S_foreground)

如何获取分离的前景并将其转换为wav文件,以便进入下一阶段,即特征提取(MFCC提取)

0 个答案:

没有答案