在Spacy上基于现有英语模型实现自定义POS Tagger:NLP-Python

时间:2018-08-06 20:50:46

标签: python nlp spacy

我正在尝试重新训练现有的POS Tagger,以便使用下面的代码显示某些误分类单词的正确标签。但这给了我这个错误:

  

警告:未命名向量-这将不允许多个向量模型   被加载。 (形状:(0,0))

from spacy.vocab import Vocab
from spacy.tokens import Doc
from spacy.gold import GoldParse


nlp = spacy.load('en_core_web_sm')
optimizer = nlp.begin_training()
vocab = Vocab(tag_map={})
doc = Doc(vocab, words=[word for word in ['ThermostatFailedOpen','ThermostatFailedClose','BlahDeBlah']])
gold = GoldParse(doc, tags=['NNP']*3)
nlp.update([doc], [gold], drop=0, sgd=optimizer)

此外,当我再次尝试检查代码是否已使用下面的代码正确分类

doc = nlp('If ThermostatFailedOpen moves from false to true, we are going to party')
for token in doc:
    print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_,
          token.shape_, token.is_alpha, token.is_stop)
  

ThermostatFailedOpen ThermostatFailedopen VERB VB nsubj XxxxxXxxxxXxxx   真假

这些单词没有正确分类(我猜是预期的)!有关如何解决此问题的见解?

2 个答案:

答案 0 :(得分:0)

#!/usr/bin/env python
# coding: utf8


import random
from pathlib import Path
import spacy


# You need to define a mapping from your data's part-of-speech tag names to the
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
# See here for the Universal Tag Set:
# http://universaldependencies.github.io/docs/u/pos/index.html
# You may also specify morphological features for your tags, from the universal
# scheme.
TAG_MAP = {
    'N': {'pos': 'NOUN'},
    'V': {'pos': 'VERB'},
    'J': {'pos': 'ADJ'}
}

# Usually you'll read this in, of course. Data formats vary. Ensure your
# strings are unicode and that the number of tags assigned matches spaCy's
# tokenization. If not, you can always add a 'words' key to the annotations
# that specifies the gold-standard tokenization, e.g.:
# ("Eatblueham", {'words': ['Eat', 'blue', 'ham'] 'tags': ['V', 'J', 'N']})

TRAIN_DATA = [
    ("ThermostatFailedOpen", {'tags': ['V']}),
    ("EThermostatFailedClose", {'tags': ['V']})
]


def main(lang='en', output_dir=None, n_iter=25):
    """Create a new model, set up the pipeline and train the tagger. In order to
    train the tagger with a custom tag map, we're creating a new Language
    instance with a custom vocab.
    """
    nlp = spacy.blank(lang)
    # add the tagger to the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    tagger = nlp.create_pipe('tagger')
    # Add the tags. This needs to be done before you start training.
    for tag, values in TAG_MAP.items():
        tagger.add_label(tag, values)
    nlp.add_pipe(tagger)
    nlp.vocab.vectors.name = 'spacy_pretrained_vectors'
    optimizer = nlp.begin_training()
    for i in range(n_iter):
        random.shuffle(TRAIN_DATA)
        losses = {}
        for text, annotations in TRAIN_DATA:
            nlp.update([text], [annotations], sgd=optimizer, losses=losses)
        print(losses)

    # test the trained model
    test_text = "If ThermostatFailedOpen moves from false to true, we are going to party"
    doc = nlp(test_text)
    print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])

    # save model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)

        # test the save model
        print("Loading from", output_dir)
        nlp2 = spacy.load(output_dir)
        doc = nlp2(test_text)
        print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])


if __name__ == '__main__':
    main('en','customPOS')

注意:如果您尝试追加

,将会出现以下错误
 File "pipeline.pyx", line 550, in spacy.pipeline.Tagger.add_label
ValueError: [T003] Resizing pre-trained Tagger models is not currently supported.

最初我尝试了这个

nlp = spacy.load('en_core_web_sm')

    tagger = nlp.get_pipe('tagger')
    # Add the tags. This needs to be done before you start training.
    for tag, values in TAG_MAP.items():
        tagger.add_label(tag, values)

    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'tagger']
    with nlp.disable_pipes(*other_pipes):  # only train TAGGER
        nlp.vocab.vectors.name = 'spacy_pretrained_vectors'
        optimizer = nlp.begin_training()
        for i in range(n_iter):
            random.shuffle(TRAIN_DATA)
            losses = {}
            for text, annotations in TRAIN_DATA:
                nlp.update([text], [annotations], sgd=optimizer, losses=losses)
            print(losses)

答案 1 :(得分:0)

如果您使用相同的标签,并且只需要对其进行更好的培训,则无需添加新标签。但是,如果您使用其他标签集,则需要训练新模型。

对于第一种情况,您进行get_pipe('tagger'),跳过add_label循环并继续进行。

对于第二种情况,您需要创建一个新的标记器,对其进行训练,然后将其添加到管道中。为此,在加载模型时,您还需要禁用标记器(因为您将训练新的标记器)。我也回答了这个here