我正在尝试构建一个带有摄像头的应用程序,该应用程序可以识别摄像头前面板上的一些数字和字母。
此刻我可以检测到面部,柜台,但我想使用ROI和Tess4j识别此实时视频。
您知道这样的例子吗?
我的想法是我必须逐帧分析,并且当我检测到类似'*'的字符时,我会完全验证值
public class Demo {
public static void main(String[] args) throws Exception {
String classifierName = null;
if (args.length > 0) {
classifierName = args[0];
} else {
URL url = new URL("https://raw.github.com/Itseez/opencv/2.4.0/data/haarcascades/haarcascade_frontalface_alt.xml");
File file = Loader.extractResource(url, null, "classifier", ".xml");
file.deleteOnExit();
classifierName = file.getAbsolutePath();
}
// Preload the opencv_objdetect module to work around a known bug.
Loader.load(opencv_objdetect.class);
// We can "cast" Pointer objects by instantiating a new object of the desired class.
CvHaarClassifierCascade classifier = new CvHaarClassifierCascade(cvLoad(classifierName));
if (classifier.isNull()) {
System.err.println("Error loading classifier file \"" + classifierName + "\".");
System.exit(1);
}
// The available FrameGrabber classes include OpenCVFrameGrabber (opencv_videoio),
// DC1394FrameGrabber, FlyCaptureFrameGrabber, OpenKinectFrameGrabber, OpenKinect2FrameGrabber,
// RealSenseFrameGrabber, PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber.
FrameGrabber grabber = FrameGrabber.createDefault(0);
grabber.start();
// CanvasFrame, FrameGrabber, and FrameRecorder use Frame objects to communicate image data.
// We need a FrameConverter to interface with other APIs (Android, Java 2D, or OpenCV).
OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
// FAQ about IplImage and Mat objects from OpenCV:
// - For custom raw processing of data, createBuffer() returns an NIO direct
// buffer wrapped around the memory pointed by imageData, and under Android we can
// also use that Buffer with Bitmap.copyPixelsFromBuffer() and copyPixelsToBuffer().
// - To get a BufferedImage from an IplImage, or vice versa, we can chain calls to
// Java2DFrameConverter and OpenCVFrameConverter, one after the other.
// - Java2DFrameConverter also has static copy() methods that we can use to transfer
// data more directly between BufferedImage and IplImage or Mat via Frame objects.
IplImage grabbedImage = converter.convert(grabber.grab());
int width = grabbedImage.width();
int height = grabbedImage.height();
IplImage grayImage = IplImage.create(width, height, IPL_DEPTH_8U, 1);
IplImage rotatedImage = grabbedImage.clone();
// Objects allocated with a create*() or clone() factory method are automatically released
// by the garbage collector, but may still be explicitly released by calling release().
// You shall NOT call cvReleaseImage(), cvReleaseMemStorage(), etc. on objects allocated this way.
CvMemStorage storage = CvMemStorage.create();
// The OpenCVFrameRecorder class simply uses the CvVideoWriter of opencv_videoio,
// but FFmpegFrameRecorder also exists as a more versatile alternative.
FrameRecorder recorder = FrameRecorder.createDefault("output.avi", width, height);
recorder.start();
// CanvasFrame is a JFrame containing a Canvas component, which is hardware accelerated.
// It can also switch into full-screen mode when called with a screenNumber.
// We should also specify the relative monitor/camera response for proper gamma correction.
CanvasFrame frame = new CanvasFrame("Some Title", CanvasFrame.getDefaultGamma()/grabber.getGamma());
// Let's create some random 3D rotation...
CvMat randomR = CvMat.create(3, 3), randomAxis = CvMat.create(3, 1);
// We can easily and efficiently access the elements of matrices and images
// through an Indexer object with the set of get() and put() methods.
DoubleIndexer Ridx = randomR.createIndexer(), axisIdx = randomAxis.createIndexer();
axisIdx.put(0, (Math.random()-0.5)/4, (Math.random()-0.5)/4, (Math.random()-0.5)/4);
cvRodrigues2(randomAxis, randomR, null);
double f = (width + height)/2.0; Ridx.put(0, 2, Ridx.get(0, 2)*f);
Ridx.put(1, 2, Ridx.get(1, 2)*f);
Ridx.put(2, 0, Ridx.get(2, 0)/f); Ridx.put(2, 1, Ridx.get(2, 1)/f);
System.out.println(Ridx);
// We can allocate native arrays using constructors taking an integer as argument.
CvPoint hatPoints = new CvPoint(3);
while (frame.isVisible() && (grabbedImage = converter.convert(grabber.grab())) != null) {
cvClearMemStorage(storage);
// Let's try to detect some faces! but we need a grayscale image...
cvCvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
CvSeq faces = cvHaarDetectObjects(grayImage, classifier, storage,
1.1, 3, CV_HAAR_FIND_BIGGEST_OBJECT | CV_HAAR_DO_ROUGH_SEARCH);
int total = faces.total();
for (int i = 0; i < total; i++) {
CvRect r = new CvRect(cvGetSeqElem(faces, i));
int x = r.x(), y = r.y(), w = r.width(), h = r.height();
cvRectangle(grabbedImage, cvPoint(x, y), cvPoint(x+w, y+h), CvScalar.RED, 1, CV_AA, 0);
// To access or pass as argument the elements of a native array, call position() before.
hatPoints.position(0).x(x-w/10) .y(y-h/10);
hatPoints.position(1).x(x+w*11/10).y(y-h/10);
hatPoints.position(2).x(x+w/2) .y(y-h/2);
cvFillConvexPoly(grabbedImage, hatPoints.position(0), 3, CvScalar.GREEN, CV_AA, 0);
}
// Let's find some contours! but first some thresholding...
cvThreshold(grayImage, grayImage, 64, 255, CV_THRESH_BINARY);
// To check if an output argument is null we may call either isNull() or equals(null).
CvSeq contour = new CvSeq(null);
cvFindContours(grayImage, storage, contour, Loader.sizeof(CvContour.class),
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
while (contour != null && !contour.isNull()) {
if (contour.elem_size() > 0) {
CvSeq points = cvApproxPoly(contour, Loader.sizeof(CvContour.class),
storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
cvDrawContours(grabbedImage, points, CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA);
}
contour = contour.h_next();
}
//TESS4J - se ahou os contornos, analisar conteúdo
if(contour != null && !contour.isNull()) {
IplImageToBufferedImage(grayImage);
ITesseract instance = new Tesseract(); // JNA Interface Mapping
instance.setTessVariable("tessedit_char_whitelist", "0123456789");
try {
String result = instance.doOCR(IplImageToBufferedImage(grayImage));
System.out.println(result);
} catch (TesseractException e) {
System.err.println(e.getMessage());
}
}
cvWarpPerspective(grabbedImage, rotatedImage, randomR);
Frame rotatedFrame = converter.convert(rotatedImage);
frame.showImage(rotatedFrame);
recorder.record(rotatedFrame);
}
frame.dispose();
recorder.stop();
grabber.stop();
}
public static BufferedImage IplImageToBufferedImage(IplImage src) {
OpenCVFrameConverter.ToIplImage grabberConverter = new OpenCVFrameConverter.ToIplImage();
Java2DFrameConverter paintConverter = new Java2DFrameConverter();
Frame frame = grabberConverter.convert(src);
return paintConverter.getBufferedImage(frame,1);
}
}