这是我的代码:
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
X=np.array([[1, 2, 4]]).T
print(X)
y=np.array([1, 4, 16])
print(y)
model = make_pipeline(PolynomialFeatures(degree=2),
LinearRegression(fit_intercept = False))
model.fit(X,y)
X_predict = np.array([[3]])
print(model.predict(X_predict))
请,我想从这样的文件中提取X和y:
x | y
1 | 1
2 | 4
4 | 16
(这是一个示例。我的文件包含100多个ligne)。 我必须使用什么方法? 此致。
答案 0 :(得分:1)
with open('input.txt') as fp:
for line in fp:
b = line.split("|")
x,y = b
在此代码中,x是|
之前的整数,y是|
之后的整数。
总代码为:
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
X_arr = []
Y_arr = []
with open('input.txt') as fp:
for line in fp:
b = line.split("|")
x,y = b
X_arr.append(int(x))
Y_arr.append(int(y))
X=np.array([X_arr]).T
print(X)
y=np.array(Y_arr)
print(y)
model = make_pipeline(PolynomialFeatures(degree=2),
LinearRegression(fit_intercept = False))
model.fit(X,y)
X_predict = np.array([[3]])
print(model.predict(X_predict))