我有一个数据框df
df <- data.frame(id =c(1,2,1,4,1,5,6),
label=c("a","b", "a", "a","a", "e", "a"),
color = c("g","a","g","g","a","a","a"),
threshold = c(12, 10, 12, 12, 12, 35, 40),
value =c(32.1,0,15.0,10,1,50,45),stringsAsFactors = F
)
阈值基于标签
我应该像下面这样通过考虑每个id来获得一个表格,其中每个标签的值超出其阈值多少倍
颜色在计算超出值时是独立考虑的
我尝试过
final_df <- df %>%
mutate(check = if_else(value > threshold, 1, 0)) %>%
group_by(id, label) %>%
summarise(exceed = sum(check))
但是我没有获得各自的ID,而是获得了总数超过
答案 0 :(得分:3)
仅对于基数R,请使用aggregate
。
aggregate(seq.int(nrow(df)) ~ id + label, df, function(i) sum(df[i, 4] < df[i, 5]))
# id label seq.int(nrow(df))
#1 1 a 2
#2 4 a 0
#3 6 a 1
#4 2 b 0
#5 5 e 1
为了与问题中发布的预期输出匹配,需要做一些额外的工作。
exceed <- seq.int(nrow(df))
agg <- aggregate(exceed ~ id + label, df, function(i) sum(df[i, 4] < df[i, 5]))
res <- merge(df[1:3], agg)
unique(res)
# id label color exceed
#1 1 a g 2
#3 1 a a 2
#4 2 b a 0
#5 4 a g 0
#6 5 e a 1
#7 6 a a 1
答案 1 :(得分:2)
通过对代码进行少量修改:
final_df <- df %>%
group_by(id, label) %>%
mutate(check = if_else(value > threshold, 1, 0)) %>%
summarise(exceed = sum(check)) %>%
group_by(id, label)
为了更接近预期的输出,
final_df <- df %>%
group_by(id, label) %>%
mutate(exceed = sum(if_else(value > threshold, 1, 0))) %>%
group_by(id, label, color) %>%
filter(., row_number() == 1)
答案 2 :(得分:1)
library(dplyr)
df %>%
group_by(id, label) %>%
mutate(exceed = sum(value > threshold)) %>%
slice(1)
id label color threshold value exceed
<dbl> <chr> <chr> <dbl> <dbl> <int>
1 1 a g 12 32.1 2
2 2 b a 10 0 0
3 4 a g 12 10 0
4 5 e a 35 50 1
5 6 a a 40 45 1
如果您希望输出为ID,标签和颜色的每种组合包含一个单独的行,只需在group_by
函数之前添加一个新的slice
:
df %>%
group_by(id, label) %>%
mutate(exceed = sum(value > threshold)) %>%
group_by(id, label, color) %>%
slice(1)
id label color threshold value exceed
<dbl> <chr> <chr> <dbl> <dbl> <int>
1 1 a a 12 1 2
2 1 a g 12 32.1 2
3 2 b a 10 0 0
4 4 a g 12 10 0
5 5 e a 35 50 1
6 6 a a 40 45 1
答案 3 :(得分:0)
您的代码有少许变化
final_df <- df %>% mutate(check = if_else(value > threshold, 1, 0)) %>% group_by(id, label) %>% filter(check==1)
unique(final_df$id)
答案 4 :(得分:0)
我们可以使用table
和merge
:
table_ <- table(subset(df,value>threshold, c("id","label")))
df2 <- merge(unique(df[c("id","label","color")]),table_,all.x=TRUE)
df2$Freq[is.na(df2$Freq)] <- 0
# id label color Freq
# 1 1 a g 2
# 2 1 a a 2
# 3 2 b a 0
# 4 4 a g 0
# 5 5 e a 1
# 6 6 a a 1