我从this stackoverflow question找到了这段代码
import pandas
from itertools import chain
import numpy
df = pandas.DataFrame(t)
df['stage.value'] = df['stage'].apply(lambda cell: cell['value'])
df['stage.name'] = df['stage'].apply(lambda cell: cell['Name'])
df['q_']= df['quality'].apply(lambda cell: [(m['type']['Name'], m['value'] if 'value' in m.keys() else 1) for m in cell])
df['q_'] = df['q_'].apply(lambda cell: dict((k, v) for k, v in cell))
keys = set(chain(*df['q_'].apply(lambda column: column.keys())))
for key in keys:
column_name = 'q_{}'.format(key).lower()
df[column_name] = df['q_'].apply(lambda cell: cell[key] if key in cell.keys() else numpy.NaN)
df.drop(['stage', 'quality', 'q_'], axis=1, inplace=True)
有什么办法可以改变线路
import numpy as np
import imutils
import cv2
img_rgb = cv2.imread('black.png')
Conv_hsv_Gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(Conv_hsv_Gray, 0, 255,cv2.THRESH_BINARY_INV |cv2.THRESH_OTSU)
img_rgb[mask == 255] = [0, 0, 255]
cv2.imshow("imgOriginal", img_rgb) # show windows
cv2.imshow("mask", mask) # show windows
cv2.waitKey(0)
还是其他可以改变颜色范围的东西? 例如:
img_rgb[mask == 255] = [0, 0, 255]
答案 0 :(得分:2)
是的。
首先,您必须创建要更改颜色范围的遮罩,答案是inRange function of OpenCV。
然后,通过numpy,您可以说蒙版不为0的地方在我的图像中将它们涂成红色。这是该代码:
import numpy as np
import cv2
# load image and set the bounds
img = cv2.imread("D:\\debug\\HLS.png")
lower =(255, 55, 0) # lower bound for each channel
upper = (255, 255, 10) # upper bound for each channel
# create the mask and use it to change the colors
mask = cv2.inRange(img, lower, upper)
img[mask != 0] = [0,0,255]
# display it
cv2.imshow("frame", img)
cv2.waitKey(0)
如果您想实际获得一定范围的颜色(例如所有蓝色),则最好使用HLS或HSV颜色空间。