假设我具有以下数据框:
val df1 = sc.parallelize(Seq("a1" -> "a2", "b1" -> "b2", "c1" -> "c2")).toDF("a", "b")
val df2 = sc.parallelize(Seq("aa1" -> "aa2", "bb1" -> "bb2")).toDF("aa", "bb")
我想要以下内容:
| a | b | aa | bb |
----------------------
| a1 | a2 | aa1 | aa2 |
| a1 | a2 | bb1 | bb2 |
| b1 | b2 | aa1 | aa2 |
| b1 | b2 | bb1 | bb2 |
| c1 | c2 | aa1 | aa2 |
| c1 | c2 | bb1 | bb2 |
因此df1
的每一行都映射到df2
的所有行。我的操作方式如下:
val df1_dummy = df1.withColumn("dummy_df1", lit("dummy"))
val df2_dummy = df2.withColumn("dummy_df2", lit("dummy"))
val desired_result = df1_dummy
.join(df2_dummy, $"dummy_df1" === $"dummy_df2", "left")
.drop("dummy_df1")
.drop("dummy_df2")
它给出了预期的结果,但似乎有点不好。有更有效的方法吗?有什么建议吗?
答案 0 :(得分:4)
这就是crossJoin
的作用:
val result = df1.crossJoin(df2)
result.show()
// +---+---+---+---+
// |a |b |aa |bb |
// +---+---+---+---+
// |a1 |a2 |aa1|aa2|
// |a1 |a2 |bb1|bb2|
// |b1 |b2 |aa1|aa2|
// |b1 |b2 |bb1|bb2|
// |c1 |c2 |aa1|aa2|
// |c1 |c2 |bb1|bb2|
// +---+---+---+---+