我的优先约束代码有一些问题。这里是一个例子:
我想实现以下先前约束:
其中:
i = tasks;
t = period;
j = model of product
x = binary variable which returns 1
if task i is done in period t for model j and 0 otherwise.
为了满足约束条件,P_i代表一个具有i的前置任务的集合。
为了使代码标准化,我使用一个前驱矩阵根据任务创建了集合,并将其保存在字典中。这是我的代码:
import pyomo.environ
from pyomo.core import *
from pyomo.opt import SolverFactory
M_predecessor = [[0,0,0,0,],[0,0,0,0],[1,1,0,0,],[0,0,1,0,]]
predecessor = dict()
for i in range(4):
b = i+1
predecessor[b] = []
for j in range(4):
if M_predecessor[i][j] == 1:
predecessor[b].append(j+1)
model = ConcreteModel()
model.TASKS = RangeSet(1,len(M_predecessor))
model.PERIODS = RangeSet(1,10)
model.MODELS = [1]
这是约束:
def rest1_rule(model, i, j):
return sum(t * model.x[i,t,j] for t in model.PERIODS) >= (
sum(t * model.x[p for p in predecessor[i],t,j] for t in model.PERIODS)) + model.tiempo[p for p in predecessor[i],j]
model.rest1 = Constraint(model.TASKS, model.MODELS, rule=rest1_rule)
我不确定如何在约束条件下实施它,请问有什么想法?还有另一种形式吗? 预先感谢
答案 0 :(得分:0)
@model.Constraint(model.TASKS, model.TASKS, model.MODELS)
def rest1(m, i, p, j):
if p in predecessor[i]:
return sum(t * m.x[i, t, j] for t in m.PERIODS) >= (
sum(t * m.x[p, t, j] for t in m.PERIODS)
+ model.timepo[p])
else:
return Constraint.NoConstraint